Skip to main content

Why Alzheimer’s is a Disease of Memory: Synaptic Targeting by Pathogenic Aβ Oligomers (ADDLs)

  • Chapter
Synaptic Plasticity and the Mechanism of Alzheimer's Disease

Abstract

Early Alzheimer’s disease manifests as a crippling inability to form new memories, but why Alzheimer’s is specific formemory has yet to be answered. As evidenced by thismeeting, research increasingly focuses on deterioration of synapses and dendritic spines (1), a concept introduced more than 30 years ago by Scheibel and colleagues (2). This synaptic damage is now attributed to the impact of soluble Abeta oligomers, thanks to contributions from multiple laboratories. Abeta oligomers (here referred to as “ADDLs”) were identified in 1998 as a new type of toxin, structurally distinct fromamyloid fibrils, that rapidly prevented LTP (3). ADDL-induced disruption of plasticity ismeasurable atmultiple levels, including ectopic over-expression of Arc, a spine cytoskeletal protein essential for memory formation. Confirming predictions based on the Arc response, ADDLs cause critical receptors to be eliminated fromsynaptic membranes and induce aberrations in spine morphology, with sustained presence of ADDLs resulting in spine elimination (4). Themechanism underlying these synaptic pathologies likely holds the key to understanding whyADis specific formemory.ADDL-induced pathologies are not broad consequences ofwholescale neuronal deterioration but instead derive from a highly specific attachment to the spines of certain excitatory synapses.Whether obtained fromADbrain or prepared in vitro,ADDLsbind to their targeted spines with high affinity, essentially acting as gain-of-function pathogenic ligands. Brain-derived and synthetic ligands are structurally equivalent 12mers that are strikingly elevated in AD brain (5) and also appear in animal models of AD, roughly concomitant with memory failure. Recent investigations into the synaptic targets of ADDLs implicate NMDA receptors, insulin receptors, and neighboring synaptic proteins.Memantine, an NMDA receptor antagonist used as an AD therapeutic drug, effectively inhibits ADDL-induced pathologies in the short term, while antibodies against the NR1 subunit significantly reduce ADDL binding. These results suggest that ADDLs bind at or near NMDA receptors. Insulin receptors are implicated by findings that prior exposure of neurons to insulin results in virtually complete inhibition of ADDL binding. While unoccupied insulin receptors are essential forADDLbinding, they arenot sufficient, implying that high affinity binding depends upon additional co-receptors, possibly comprising NR1 subunits or other nearby proteins. A synaptic response that may prove especially important for cognitive failure is a rapid and massive removal of insulin receptors from dendritic plasma membranes triggered when ADDLs are added prior to exogenous insulin. Accompanying this removal is an increase of insulin receptors within neuronal cell bodies, a net receptor redistribution that renders neurons insulin resistant. Antagonistic interaction between ADDLs and insulin provides a basis for possible CNS insulin resistance in AD and predicts therapeutic benefits for drugs that promote brain insulin function. Overall, knowing how ADDLs target and disrupt specific synapses will bring us closer to understanding why AD is a disease of memory and provide new avenues for the discovery of disease-modifying therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison DW, Chervin AS, Gelfand VI, Craig AM (2000) Postsynaptic scaffolds of excitatory and inhibitory synapses in hippocampal neurons: maintenance of core components independent of actin filaments and microtubules. J Neurosci 20:4545–4554.

    PubMed  CAS  Google Scholar 

  • Aoki C, Sekino Y, Hanamura K, Fujisawa S, Mahadomrongkul V, Ren Y, Shirao T (2005) Drebrin A is a postsynaptic protein that localizes in vivo to the submembranous surface of dendritic sites forming excitatory synapses. J Comp Neurol 483:383–402.

    Article  PubMed  CAS  Google Scholar 

  • Avignon A, Yamada K, Zhou X, Spencer B, Cardona O, Saba-Siddique S, Galloway L, Standaert ML, Farese RV (1996) Chronic activation of protein kinase C in soleus muscles and other tissues of insulin-resistant type II diabetic Goto-Kakizaki (GK), obese/aged, and obese/Zucker rats. A mechanism for inhibiting glycogen synthesis. Diabetes 45:1396–1404.

    Article  PubMed  CAS  Google Scholar 

  • Bennett MR (2000) The concept of long term potentiation of transmission at synapses. Prog Neurobiol 60:109–137.

    Article  PubMed  CAS  Google Scholar 

  • Biessels GJ, Kamal A, Ramakers GM, Urban IJ, Spruijt BM, Erkelens DW, Gispen WH (1996) Place learning and hippocampal synaptic plasticity in streptozotocin-induced diabetic rats. Diabetes 45:1259–1266.

    Article  PubMed  CAS  Google Scholar 

  • Bitan G, Lomakin A, Teplow DB (2001) Amyloid beta-protein oligomerization: prenucleation interactions revealed by photo-induced cross-linking of unmodified proteins. J Biol Chem 276:35176–35184.

    Article  PubMed  CAS  Google Scholar 

  • Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function. Neuron 35:1019–1027.

    Article  PubMed  CAS  Google Scholar 

  • Bossenmaier B, Mosthaf L, Mischak H, Ullrich A, Haring HU (1997) Protein kinase C isoforms beta 1 and beta 2 inhibit the tyrosine kinase activity of the insulin receptor. Diabetologia 40:863–866.

    Article  PubMed  CAS  Google Scholar 

  • Boutaud O, Montine TJ, Chang L, Klein WL, Oates JA (2006) PGH-derived levuglandin adducts increase the neurotoxicity of amyloid beta1-42. J Neurochem 96:917–923.

    Article  PubMed  CAS  Google Scholar 

  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C (1992) Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem 267:546–554.

    PubMed  CAS  Google Scholar 

  • Calon F, Lim GP, Yang F, Morihara T, Teter B, Ubeda O, Rostaing P, Triller A, Salem N, Jr., Ashe KH, Frautschy SA, Cole GM (2004) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645.

    Google Scholar 

  • Carlisle HJ, Kennedy MB (2005) Spine architecture and synaptic plasticity. Trends Neurosci 28:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Lambert MP, Viola KL, Gong Y, Venton DL, Krafft GA, Finch CE, Klein WL (2001) Non fibrillar Abeta toxins in AD: An immunoassay to characterize ADDL formation and identify ADDL-blocker compounds. Soc Neurosci.Abs 27:322.

    Google Scholar 

  • Chang L, Bakhos L, Wang Z, Venton DL, Klein WL (2003) Femtomole immunodetection of synthetic and endogenous Amyloid-β oligomers and its application to Alzheimer’s Disease drug candidate screening. J Mol Neurosci 20:305–313.

    Article  PubMed  CAS  Google Scholar 

  • Chromy BA, Nowak RJ, Lambert MP, Viola KL, Chang L, Velasco PT, Jones BW, Fernandez SJ, Lacor PN, Horowitz P, Finch CE, Krafft GA, Klein WL (2003) Self-assembly of Abeta(1-42) into globular neurotoxins. Biochemistry 42:12749–12760.

    Article  PubMed  CAS  Google Scholar 

  • Considine RV, Nyce MR, Allen LE, Morales LM, Triester S, Serrano J, Colberg J, Lanza-Jacoby S, Caro JF (1995) Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest 95:2938–2944.

    PubMed  CAS  Google Scholar 

  • Crick F (1982) Do dendritic spines twitch? Trends Neurosci 5:44–46.

    Article  Google Scholar 

  • Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu L, Gale NW, Greenberg ME (2000) EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103:945–956.

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007a) Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601.

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2007b) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Abeta oligomers. Neurobiol Aging. Epub.

    Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464.

    Article  PubMed  CAS  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, DeMattos RB, Mathis C, DeLong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Abeta burden in Alzheimer’s disease model. Nature Neurosci 5:452–457.

    PubMed  CAS  Google Scholar 

  • Ferreira ST, Vieira MN, De Felice FG (2007) Soluble protein oligomers as emerging toxins in Alzheimer’s and other amyloid diseases. IUBMB Life 59:332–345.

    Article  PubMed  CAS  Google Scholar 

  • Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39:29–54.

    Article  PubMed  Google Scholar 

  • Frackowiak J, Zoltowska A, Wisniewski HM (1994) Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol 53:637–645.

    PubMed  CAS  Google Scholar 

  • Fujimoto T, Tanaka H, Kumamaru E, Okamura K, Miki N (2004) Arc interacts with microtubules/microtubule-associated protein 2 and attenuates microtubule-associated protein 2 immunoreactivity in the dendrites. J Neurosci Res 76:51–63.

    Article  PubMed  CAS  Google Scholar 

  • Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102:2273–2276.

    Article  PubMed  CAS  Google Scholar 

  • Gines S, Ivanova E, Seong IS, Saura CA, MacDonald ME (2003) Enhanced Akt signaling is an early pro-survival response that reflects N-methyl-D-aspartate receptor activation in Huntington’s disease knock-in striatal cells. J Biol Chem 278:50514–50522.

    Article  PubMed  CAS  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575.

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890.

    Article  PubMed  CAS  Google Scholar 

  • Gong Y, Chang L, Viola KL, Lacor PN, Lambert MP, Finch CE, Krafft GA, Klein WL (2003) Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc Natl Acad Sci USA 100:10417–10422.

    Article  PubMed  CAS  Google Scholar 

  • Griffin RJ, Moloney A, Kelliher M, Johnston JA, Ravid R, Dockery P, O’Connor R, O’Neill C (2005) Activation of Akt/PKB, increased phosphorylation of Akt substrates and loss and altered distribution of Akt and PTEN are features of Alzheimer’s disease pathology. J Neurochem 93:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2002) Inflammatory status and insulin resistance. Curr Opin Clin Nutr Metab Care 5:551–559.

    Article  PubMed  CAS  Google Scholar 

  • Grutzendler J, Helmin K, Tsai J, Gan WB (2007) Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer’s disease. Ann NY Acad Sci 1097:30–39.

    Article  PubMed  Google Scholar 

  • Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF, Barnes CA (2000) Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J Neurosci 20:3993–4001.

    PubMed  CAS  Google Scholar 

  • Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nature Rev Mol Cell Biol 8:101–112.

    Article  CAS  Google Scholar 

  • Haes AJ, Chang L, Klein WL, Van Duyne RP (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271.

    Article  PubMed  CAS  Google Scholar 

  • Hainfellner JA, Liberski PP, Guiroy DC, Cervenakova L, Brown P, Gajdusek DC, Budka H (1997) Pathology and immunocytochemistry of a kuru brain. Brain Pathol 7:547–553.

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356.

    Article  PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991) Aggregation and secondary structure of synthetic amyloid beta A4 peptides of Alzheimer’s disease. J Mol Biol 218:149–163.

    Article  PubMed  CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:5161–5166.

    Article  PubMed  CAS  Google Scholar 

  • Katzman R, Terry R, DeTeresa R, Brown T, Davies P, Fuld P, Renbing X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991.

    Article  PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489.

    Article  PubMed  CAS  Google Scholar 

  • Kelly MP, Deadwyler SA (2003) Experience-dependent regulation of the immediate-early gene arc differs across brain regions. J Neurosci 23:6443–6451.

    PubMed  CAS  Google Scholar 

  • Kim HJ, Chae SC, Lee DK, Chromy B, Lee SC, Park YC, Klein WL, Krafft GA, Hong ST (2003) Selective neuronal degeneration induced by soluble oligomeric amyloid beta protein. FASEB J 17:118–120.

    PubMed  CAS  Google Scholar 

  • Klein WL (2000) Aβ toxicity in Alzheimer’s Disease. In: Chesselet MF (ed) Molecular mechanisms of neurodegenerative diseases., Totowa, New Jersey: Humana Press, Inc., pp 1–49.

    Chapter  Google Scholar 

  • Klein WL (2002) ADDLs and protofibrils – the missing links? Neurobiol Aging 23:231–235.

    Article  PubMed  CAS  Google Scholar 

  • Klein WL (2006) Synaptic targeting by Abeta oligomers (ADDLs) as a basis for memory loss in early AD. Alzheimer’s and dementia 2:43–55.

    Article  PubMed  Google Scholar 

  • Klein WL, Barlow A, Chromy B, Edwards C, Freed R, Lambert MP, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA (1997) “ADDLs” – Soluble Aβ oligomers that cause biphasic loss of hippocampal neuron function and survival. Soc Neurosci Abstr 23:1662.

    Google Scholar 

  • Klein WL, Chromy B, Lambert MP, Tushan KL, Viola KL, Krafft GA, Finch CE (2000) Oligomer/conformation-dependent Abeta antibodies. Soc Neurosci Abst 26:1285.

    Google Scholar 

  • Klein WL, Krafft GA, Finch CE (2001) Targeting small Abeta oligomers: the solution to an Alzheimer’s disease conundrum? Trends Neurosci 24:219–224.

    Article  PubMed  CAS  Google Scholar 

  • Kotilinek LA, Bacskai B, Westerman M, Kawarabayashi T, Younkin L, Hyman BT, Younkin S, Ashe KH (2002) Reversible memory loss in a mouse transgenic model of Alzheimer’s disease. J Neurosci 22:6331–6335.

    PubMed  CAS  Google Scholar 

  • Kovacs GG, Zerbi P, Voigtlander T, Strohschneider M, Trabattoni G, Hainfellner JA, Budka H (2002) The prion protein in human neurodegenerative disorders. Neurosci Lett 329:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081.

    Article  PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Cain PC, Chang L, Lambert MP, Klein WL (2004a) Synaptic targeting by Alzheimer’s related Abeta oligomers. Neurobiol Aging 25[Suppl 2], S446:7–21.

    Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004b) Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 24:10191–10200.

    Article  PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Klein WL (2004c) ADDLs (Aβ oligomers) alter structure and function of synaptic spines. 2004 Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience[Online], Program No. 218.3.

    Google Scholar 

  • Lacor PN, Sanz-Clemente A, Viola KL, Klein WL (2005) Changes in NMDA receptor subunit 1 and 2B expression in ADDL-treated hippocampal neurons. 2005 Abstract Viewer/Itinerary Planner Washington, DC: Society for Neuroscience[Online], Program No. 786.17.

    Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Stevens G, Sabo S, Barber K, Wang G, Wade W, Krafft G, Snyder S, Holzman TF, Klein WL (1994) Beta/A4-evoked degeneration of differentiated SH-SY5Y human neuroblastoma cells. J Neurosci Res 39:377–385.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 95:6448–6453.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Viola KL, Chromy BA, Chang L, Morgan TE, Yu J, Venton DL, Krafft GA, Finch CE, Klein WL (2001) Vaccination with soluble Abeta oligomers generates toxicity-neutralizing antibodies. J Neurochem 79:595–605.

    Article  PubMed  CAS  Google Scholar 

  • Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL (2007) Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem 100:23–35.

    Article  PubMed  CAS  Google Scholar 

  • Lanz TA, Carter DB, Merchant KM (2003) Dendritic spine loss in the hippocampus of young PDAPP and Tg2576 mice and its prevention by the ApoE2 genotype. Neurobiol Dis 13:246–253.

    Article  PubMed  CAS  Google Scholar 

  • Le Roith D, Zick Y (2001) Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 24:588–597.

    Article  PubMed  Google Scholar 

  • Lee YH, White MF (2004) Insulin receptor substrate proteins and diabetes. Arch Pharm Res 27:361–370.

    PubMed  CAS  Google Scholar 

  • Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Higgins GA, Young WG, Goldgaber D, Gajdusek DC, Wilson MC, Morrison JH (1988) Distribution of precursor amyloid-beta-protein messenger RNA in human cerebral cortex: relationship to neurofibrillary tangles and neuritic plaques. Proc Natl Acad Sci USA 85:1691–1695.

    Article  PubMed  CAS  Google Scholar 

  • Link W, Konietzko U, Kauselmann G, Krug M, Schwanke B, Frey U, Kuhl D (1995) Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc Natl Acad Sci USA 92:5734–5738.

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nature Rev Drug Discov 5:160–170.

    Article  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247.

    Article  PubMed  CAS  Google Scholar 

  • Lyford GL, Yamagata K, Kaufmann WE, Barnes CA, Sanders LK, Copeland NG, Gilbert DJ, Jenkins NA, Lanahan AA, Worley PF (1995) Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14:433–445.

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Beyreuther K (1988) Neuropathology of unconventional virus infections: molecular pathology of spongiform change and amyloid plaque deposition. Ciba Found Symp 135:24–36.

    PubMed  CAS  Google Scholar 

  • Matynia A, Kushner SA, Silva AJ (2002) Genetic approaches to molecular and cellular cognition: a focus on LTP and learning and memory. Annu Rev Genet 36:687–720.

    Article  PubMed  CAS  Google Scholar 

  • Maynard CJ, Bush AI, Masters CL, Cappai R, Li QX (2005) Metals and amyloid-beta in Alzheimer’s disease. Int J Exp Pathol 86:147–159.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Mielke JG, Wang YT (2005) Insulin exerts neuroprotection by counteracting the decrease in cell-surface GABA receptors following oxygen-glucose deprivation in cultured cortical neurons. J Neurochem 92:103–113.

    Article  PubMed  CAS  Google Scholar 

  • Mishizen-Eberz AJ, Rissman RA, Carter TL, Ikonomovic MD, Wolfe BB, Armstrong DM (2004) Biochemical and molecular studies of NMDA receptor subunits NR1/2A/2B in hippocampal subregions throughout progression of Alzheimer’s disease pathology. Neurobiol Dis 15:80–92.

    Article  PubMed  CAS  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387.

    Article  PubMed  CAS  Google Scholar 

  • Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, Sadoshima J, Trimarco B (2005) Akt mediates the cross-talk between beta-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res 96:180–188.

    Article  PubMed  CAS  Google Scholar 

  • Morris RG (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 356:1453–1465.

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058.

    PubMed  CAS  Google Scholar 

  • Nakai M, Tanimukai S, Yagi K, Saito N, Taniguchi T, Terashima A, Kawamata T, Yamamoto H, Fukunaga K, Miyamoto E, Tanaka C (2001) Amyloid beta protein activates PKC-delta and induces translocation of myristoylated alanine-rich C kinase substrate (MARCKS) in microglia. Neurochem Int 38:593–600.

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa K, McHugh TJ, Wilson MA, Tonegawa S (2004) NMDA receptors, place cells and hippocampal spatial memory. Nature Rev Neurosci 5:361–372.

    Article  CAS  Google Scholar 

  • Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, Rozovsky I, Stine WB, Snyder SW, Holzman TF, Krafft GA, Finch CE (1995) Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol 136:22–31.

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421.

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, Caccamo A, Tran L, Lambert MP, Glabe CG, Klein WL, LaFerla FM (2006) Temporal profile of amyloid-beta (Abeta) oligomerization in an in vivo model of Alzheimer disease. A link between Abeta and tau pathology. J Biol Chem 281:1599–1604.

    Article  PubMed  CAS  Google Scholar 

  • Ohno M, Chang L, Tseng W, Oakley H, Citron M, Klein WL, Vassar R, Disterhoft JF (2006) Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci 23:251–260.

    Article  PubMed  Google Scholar 

  • Perkinton MS, Ip JK, Wood GL, Crossthwaite AJ, Williams RJ (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 80:239–254.

    Article  PubMed  CAS  Google Scholar 

  • Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169.

    PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314.

    Article  PubMed  CAS  Google Scholar 

  • Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13:1676–1687.

    PubMed  CAS  Google Scholar 

  • Rao A, Craig AM (2000) Signaling between the actin cytoskeleton and the postsynaptic density of dendritic spines. Hippocampus 10:527–541.

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Kim E, Sheng M, Craig AM (1998) Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 18:1217–1229.

    PubMed  CAS  Google Scholar 

  • Rickle A, Bogdanovic N, Volkman I, Winblad B, Ravid R, Cowburn RF (2004) Akt activity in Alzheimer’s disease and other neurodegenerative disorders. Neuroreport 15:955–959.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers AB (2005) Progress report on Alzheimer’s disease 2004–2005. U.S. Department of Health and Human Services; National Institutes on Aging; National Institutes of Health.

    Google Scholar 

  • Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel AB, Tomiyasu U (1978) Dendritic sprouting in Alzheimer’s presenile dementia. Exp Neurol 60:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB (1975) Progressive dendritic changes in aging human cortex. Exp Neurol 47:392–403.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt HP (2005) On the paradox of ion channel blockade and its benefits in the treatment of Alzheimer disease. Med Hypotheses 65:259–265.

    Article  PubMed  CAS  Google Scholar 

  • Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, Kondo T, Alber J, Galldiks N, Kustermann E, Arndt S, Jacobs AH, Krone W, Kahn CR, Bruning JC (2004) Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A 101:3100–3105.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791.

    Article  PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875.

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Pak DT (1999) Glutamate receptor anchoring proteins and the molecular organization of excitatory synapses. Ann NY Acad Sci 868:483–493.

    Article  PubMed  CAS  Google Scholar 

  • Shim KS, Lubec G (2002) Drebrin, a dendritic spine protein, is manifold decreased in brains of patients with Alzheimer’s disease and Down syndrome. Neurosci Lett 324:209–212.

    Article  PubMed  CAS  Google Scholar 

  • Shrestha BR, Vitolo OV, Joshi P, Lordkipanidze T, Shelanski M, Dunaevsky A (2006) Amyloid beta peptide adversely affects spine number and motility in hippocampal neurons. Mol Cell Neurosci 33:274–282.

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neurosci 8:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Spires TL, Meyer-Luehmann M, Stern EA, McLean PJ, Skoch J, Nguyen PT, Bacskai BJ, Hyman BT (2005) Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. J Neurosci 25:7278–7287.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, G. R. (1998) Signaling proteins in Alzheimer’s disease: The possible roles of focal adhesion kinase, paxillin, and protein kinase C. 101–112. PhD Thesis – Northwestern University.

    Google Scholar 

  • Steward O, Worley PF (2001) Selective targeting of newly synthesized Arc mRNA to active synapses requires NMDA receptor activation. Neuron 30:227–240.

    Article  PubMed  CAS  Google Scholar 

  • Stine WB, Jr., Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622.

    Article  PubMed  CAS  Google Scholar 

  • Sze C, Bi H, Kleinschmidt-DeMasters BK, Filley CM, Martin LJ (2001) N-Methyl-D-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. J Neurol Sci 182:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944.

    PubMed  CAS  Google Scholar 

  • Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s beta-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599.

    Article  PubMed  CAS  Google Scholar 

  • Tanimukai S, Hasegawa H, Nakai M, Yagi K, Hirai M, Saito N, Taniguchi T, Terashima A, Yasuda M, Kawamata T, Tanaka C (2002) Nanomolar amyloid beta protein activates a specific PKC isoform mediating phosphorylation of MARCKS in Neuro2A cells. Neuroreport 13:549–553.

    Article  PubMed  CAS  Google Scholar 

  • Terry RD (1994) Neuropathological changes in Alzheimer disease. Prog Brain Res 101:383–390.

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580.

    Article  PubMed  CAS  Google Scholar 

  • Tian R (2005) Another role for the celebrity: Akt and insulin resistance. Circ Res 96:139–140.

    Article  PubMed  CAS  Google Scholar 

  • Tong L, Thornton PL, Balazs R, Cotman CW (2001) Beta-amyloid-(1-42) impairs activity-dependent cAMP-response element-binding protein signaling in neurons at concentrations in which cell survival is not compromised. J Biol Chem 276:17301–17306.

    Article  PubMed  CAS  Google Scholar 

  • Vollers SS, Teplow DB, Bitan G (2005) Determination of Peptide oligomerization state using rapid photochemical crosslinking. Methods Mol Biol 299:11–18.

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    Article  PubMed  CAS  Google Scholar 

  • Wan Q, Xiong ZG, Man HY, Ackerley CA, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT (1997) Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388:686–690.

    Article  PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140.

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22:RC221.

    Google Scholar 

  • Zhao W, Chen H, Xu H, Moore E, Meiri N, Quon MJ, Alkon DL (1999) Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J Biol Chem 274:34893–34902.

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, Alkon DL (2001) Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol 177:125–134.

    Article  PubMed  CAS  Google Scholar 

  • Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon M, Krafft GA, Klein WL (2007) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, W., De Felice, F., Lacor, P., Lambert, M., Zhao, WQ. (2008). Why Alzheimer’s is a Disease of Memory: Synaptic Targeting by Pathogenic Aβ Oligomers (ADDLs). In: Selkoe, D., Triller, A., Christen, Y. (eds) Synaptic Plasticity and the Mechanism of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76330-7_9

Download citation

Publish with us

Policies and ethics