Skip to main content

Multiple Levels of Synaptic Regulation by NMDA-type Glutamate Receptor in Normal and Disease States

  • Chapter
  • 881 Accesses

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

Abstract

The acquisition of new behaviors and the formation of memories occur through the creation and regulation of synaptic contacts within the brain. In mammals, most synapses form onto small, bulbous cellular compartments called dendritic spines (reviewed in Harris 1999). Spines are dynamic structures that appear rapidly following activity patterns that lead to memory formation, and these fast structural alterations are believed to contribute to the remarkable plasticity of the brain (Engert and Bonhoeffer 1999; Maletic-Savatic et al. 1999; Toni et al. 1999). Each spine is biochemically isolated (Sabatini et al. 2002) and contains components of many signaling pathways necessary for synaptic plasticity (Kornau et al. 1995). Here we describe recent work in our laboratory focusing on the role of NMDA-type glutamate receptors (NMDAR) in regulating the function and plasticity of dendritic spines and synapses in both normal and disease states (Alvarez et al.2007; Ngo-Anh et al. 2005; Bloodgood and Sabatini 2007a; Shankar et al. 2007).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez VA, Sabatini BL (2007) Anatomical and hysiological lasticity of dendritic spines. Annu Rev Neurosci 30:79–97

    Article  PubMed  CAS  Google Scholar 

  • Alvarez VA, Ridenour DA, Sabatini BL (2007) Distinct structural and ionotrophic roles of NMDA receptors in controlling spine and synapse stability. J Neurosci 27(28): 7365–76.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007a) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53:249–260.

    Article  PubMed  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007b) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 17:345–351

    Article  PubMed  CAS  Google Scholar 

  • Bradley J, Carter SR, Rao VR, Wang J, Finkbeiner S (2006) Splice variants of the NR1 subunit differentially induce NMDA receptor-dependent gene expression. J Neurosci 26:1065–1076.

    Article  PubMed  CAS  Google Scholar 

  • Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493.

    Article  PubMed  CAS  Google Scholar 

  • Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16:825–833.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Tingley WG, Huganir RL (1995) Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science 269:1734–1737.

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Fung ET, O’Brien RJ, Huganir RL (1998) Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci 18:720–730.

    PubMed  CAS  Google Scholar 

  • Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70.

    Article  PubMed  CAS  Google Scholar 

  • Fox K, Schlaggar BL, Glazewski S, O’Leary DD (1996) Glutamate receptor blockade at cortical synapses disrupts development of thalamocortical and columnar organization in somatosensory cortex. Proc Natl Acad Sci USA 93:5584–5589.

    Article  PubMed  CAS  Google Scholar 

  • Harris KM (1999) Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol 9:343–348.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843.

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Pallas SL (2001) NMDA Antagonists in the Superior Colliculus Prevent Developmental Plasticity But Not Visual Transmission or Map Compression. J Neurophysiol 86:1179–1194.

    PubMed  CAS  Google Scholar 

  • Jourdain P, Fukunaga K, Muller D (2003) Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation. J Neurosci 23:10645–10649.

    PubMed  CAS  Google Scholar 

  • Kim KS, Miller DL, Sapienza VJ, Chen C-MJ, Bai C, Grundke-Iqbal I, Currie JR, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Comm 2:1212–1130.

    Google Scholar 

  • Knott GW, Quairiaux C, Genoud C, Welker E (2002) Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice. Neuron 34:265–273.

    Article  PubMed  CAS  Google Scholar 

  • Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740.

    Article  PubMed  CAS  Google Scholar 

  • Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE (1996) Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem 271:4077–4081.

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954–2961.

    PubMed  CAS  Google Scholar 

  • Laurie DJ, Seeburg PH (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14:3180–3194.

    PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527.

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21.

    Article  PubMed  CAS  Google Scholar 

  • Maletic-Savatic M, Malinow R, Svoboda K (1999) Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766.

    Article  PubMed  CAS  Google Scholar 

  • McIlhinney RA, Philipps E, Le Bourdelles B, Grimwood S, Wafford K, Sandhu S, Whiting P (2003) Assembly of N-methyl-D-aspartate (NMDA) receptors. Biochem Soc Trans 31:865–868.

    Article  PubMed  CAS  Google Scholar 

  • McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE (2000) Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta-induced toxicity. J Biol Chem 275:18495–18502.

    Article  PubMed  CAS  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866.

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256:1217–1221.

    Article  PubMed  CAS  Google Scholar 

  • Moolman DL, Vitolo OV, Vonsattel JP, Shelanski ML (2004) Dendrite and dendritic spine alterations in Alzheimer models. J Neurocytol 33:377–387.

    Article  PubMed  CAS  Google Scholar 

  • Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058.

    PubMed  CAS  Google Scholar 

  • Nagerl UV, Eberhorn N, Cambridge SB, Bonhoeffer T (2004) Bidirectional activity-dependent morphological plasticity in hippocampal neurons. Neuron 44:759–767.

    Article  PubMed  Google Scholar 

  • Naslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 283:1571–1577.

    Article  PubMed  CAS  Google Scholar 

  • Ngo-Anh TJ, Bloodgood BL, Lin M, Sabatini BL, Maylie J, Adelman JP (2005) SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines. Nature Neurosci 8:642–649.

    Article  PubMed  CAS  Google Scholar 

  • Paupard MC, Friedman LK, Zukin RS (1997) Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus. Neuroscience 79:399–409.

    Article  PubMed  CAS  Google Scholar 

  • Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, Selkoe DJ (1995) Aggregation of secreted amyloid beta-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270:9564–9570.

    Article  PubMed  CAS  Google Scholar 

  • Sabatini BL, Oertner TG, Svoboda K (2002) The life-cycle of Ca2+ ions in spines. Neuron 33:439–452

    Article  PubMed  CAS  Google Scholar 

  • Sawtell NB, Frenkel MY, Philpot BD, Nakazawa K, Tonegawa S, Bear MF (2003) NMDA Receptor-Dependent Ocular Dominance Plasticity in Adult Visual Cortex. Neuron 38:977–985.

    Article  PubMed  CAS  Google Scholar 

  • Schorge S, Colquhoun D (2003) Studies of NMDA receptor function and stoichiometry with truncated and tandem subunits. J Neurosci 23:1151–1158.

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766.

    PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875.

    Article  PubMed  CAS  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neurosci 8:1051–1058.

    Article  PubMed  CAS  Google Scholar 

  • Spires TL, Grote HE, Garry S, Cordery PM, Van Dellen A, Blakemore C, Hannan AJ (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799–2807.

    Article  PubMed  Google Scholar 

  • Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ (2000) PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28:887–898.

    Article  PubMed  CAS  Google Scholar 

  • Tavazoie SF, Alvarez VA, Ridenour DA, Kwiatkowski DJ, Sabatini BL (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neurosci 8:1727–1734.

    Article  PubMed  CAS  Google Scholar 

  • Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ, Prybylowski K, Standley S, Sans N, Petralia RS (2003) Trafficking of NMDA receptors. Annu Rev Pharmacol Toxicol 43:335–358.

    Article  PubMed  CAS  Google Scholar 

  • Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Yang G, Kwon E, Gan WB (2005) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436:261–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alvarez, V., Shankar, G., Bloodgood, B., Selkoe, D., Sabatini, B. (2008). Multiple Levels of Synaptic Regulation by NMDA-type Glutamate Receptor in Normal and Disease States. In: Selkoe, D., Triller, A., Christen, Y. (eds) Synaptic Plasticity and the Mechanism of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76330-7_7

Download citation

Publish with us

Policies and ethics