Skip to main content

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

  • 883 Accesses

Abstract

Transgenic (Tg) mouse models of Alzheimer’s Disease (AD) provide insight into the earliest changes observable as potential strategic targets by which to mount therapeutic interventions.Acomparison of the differentmousemodels to determine the earliest timeatwhich diffuse or compact amyloid deposits are detected versus other structural pathology indicates that multiple factors combine to produce highly variable courses across Tgmousemodels. Therefore, we sought to define the earliest time point atwhich alterations could be detected andwhether such changeswere progressive intwodifferentmousemodels, the ElanPDAPPmouse andthe original Tg2576mouse. In the Elan PDAPPmouse, Tg hippocampal volumes were statistically significantly smaller at 100 days but the volume differences did not progress. Furthermore, the volume loss was restricted to the dentate gyrus (DG), where the difference between Tg and wild-type (WT) brain was nearly 30% by 100 days. Amyloid deposition was not detected until six months of age. Subsequent studies confirmed that the outer molecular layer (OML) terminal projections of the lateral entorhinal cortex layer II neurons were the earliest and most consistent sites of synaptic dysfunction. With age, PDAPP WT mice eventually also showed loss of OML dendritic spines. In the Tg2576 mice, no hippocampal or cortical volumetric differences were detected, but OML dendritic spine analysis, electrophysiology and behavior were all affected (versus WT mice) by four months of age. Amyloid was not detectable until 15 months of age. Others have recently confirmed these observations on the dentate OML synapse loss in the older Tg2576 mouse. Thus, early neurotoxic fragments may make highly vulnerable synapses the earliest site pathology in these simulations of familial AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bloom FE, Reilly JF, Redwine JM, Wu CC, Young WG, Morrison JH (2005) Mouse models of human neurodegenerative disorders: requirements for medication development. Arch Neurol 62:185–187.

    Article  PubMed  Google Scholar 

  • Broide RS, Trembleau A, Ellison JA, Cooper J, Lo D, Young WG, Morrison JH, Bloom FE (2004) Standardized quantitative in situ hybridization using radioactive oligonucleotide probes for detecting relative levels of mRNA transcripts verified by real-time PCR. Brain Res 1000:211–222.

    Article  PubMed  CAS  Google Scholar 

  • Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, Younkin L, Good MA, Bliss TV, Hyman BT, Younkin SG, Hsiao KK (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neurosci 2:271–276.

    Article  PubMed  CAS  Google Scholar 

  • Dong H, Csernansky CA, Martin MV, Bertchume A, Vallera D, Csernansky JG (2005) Acetylcholinesterase inhibitors ameliorate behavioral deficits in the Tg2576 mouse model of Alzheimer’s disease. Psychopharmacology (Berl) 181:145–152.

    Article  CAS  Google Scholar 

  • Games D, Buttini M, Kobayashi D, Schenk D, Seubert P (2006) Mice as models: transgenic approaches and Alzheimer’s disease. J Alzheimers Dis 9:133–149.

    PubMed  CAS  Google Scholar 

  • Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice [see comment]. Science 274:99–102.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:5161–5166.

    Article  PubMed  CAS  Google Scholar 

  • Redwine JM, Kosofsky B, Jacobs RE, Games D, Reilly JF, Morrison JH, Young WG, Bloom FE (2003) Dentate gyrus volume is reduced before onset of plaque formation in PDAPP mice: a magnetic resonance microscopy and stereologic analysis. Proc Natl Acad Sci USA 100:1381–1386.

    Article  PubMed  CAS  Google Scholar 

  • Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci USA 100:4837–4842.

    Article  PubMed  CAS  Google Scholar 

  • Schenk D, Games D, Seubert P (2001) Potential treatment opportunities for Alzheimer’s disease through inhibition of secretases and Abeta immunization. J Mol Neurosci 17:259–267.

    Article  PubMed  CAS  Google Scholar 

  • Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci USA 101:7181–7186.

    Article  PubMed  CAS  Google Scholar 

  • Westerman MA, Cooper-Blacketer D, Mariash A, Kotilinek L, Kawarabayashi T, Younkin LH, Carlson GA, Younkin SG, Ashe KH (2002) The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 22:1858–1867.

    PubMed  CAS  Google Scholar 

  • Wu CC, Chawla F, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE (2004) Selective vulnerability of dentate granule cells prior to amyloid deposition in PDAPP mice: digital morphometric analyses. Proc Natl Acad Sci USA 101:7141–7146.

    Article  PubMed  CAS  Google Scholar 

  • Zapala MA, Hovatta I, Ellison JA, Wodicka L, Del Rio JA, Tennant R, Tynan W, Broide RS, Helton R, Stoveken BS, Winrow C, Lockhart DJ, Reilly JF, Young WG, Bloom FE, Lockhart DJ, Barlow C (2005) Adult mouse brain gene expression patterns bear an embryologic imprint. Proc Natl Acad Sci USA 102:10357–10362.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloom, F. (2008). Quantitative Neuropathology in Alzheimer’s Mouse Models. In: Selkoe, D., Triller, A., Christen, Y. (eds) Synaptic Plasticity and the Mechanism of Alzheimer's Disease. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76330-7_6

Download citation

Publish with us

Policies and ethics