Skip to main content

Sulfotransferases and Their Role in Glucosinolate Biosynthesis

  • Chapter
Sulfur Assimilation and Abiotic Stress in Plants

All members of the sulfotransferase (SOT, EC 2.8.2.-) protein family use 3’-phosphoadenosine 5’-phosphosulfate as sulfuryl donor and transfer the sulfate group to an appropriate hydroxyl group of several classes of substrates. In plants, sulfate conjugation reactions seem to play an important role in plant growth, development, and adaptation to stress. The genome of Arabidopsis thaliana contains in total 21 genes that are likely to encode SOT proteins. The respective genes are differentially expressed under various biotic and abiotic stress conditions. Most of their substrates, and therefore the respective physiological roles, of plant SOT proteins are not known. In Arabidopsis three SOT proteins catalyze the last step of glucosinolate (Gl) biosynthesis. In vitro enzyme assays revealed preferences of the recombinant SOT proteins for chemically different types of Gls. In planta Gls exist side by side; therefore initial results from one-substrate measurements were verifi ed using a mixture of ds-Gls and Gl leaf extracts from Arabidopsis as substrates. These studies confi rmed the in vitro measurements. The putative role of SOT proteins in the manipulation of Gl biosynthesis and regulatory aspects will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bloem E, Haneklaus S, Peplow E, Sator C, Köhler T, Schnug E (2001) The effect of sulphur and nitrogen fertilisation on the glucotropaeolin content in Tropaeolum majus (L.). Proceedings der XXXVI. Vortragstagung Gewürz- und Heilpflanzen der DGQ, Jena Germany, pp. 185–90

    Google Scholar 

  • Brader G, Tas E, Palva, ET (2001) Jasmonate-dependent induction of indole glucosinolates in Arabidopsis by culture filtrates of the nonspecific pathogen Erwinia carotovora. Plant Physiol 126:849–60

    Article  PubMed  CAS  Google Scholar 

  • Brown PD, Tokuhisa JG, Reichelt M, Gershenzon J (2003) Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62:471–81

    Article  PubMed  CAS  Google Scholar 

  • Chew FS (1988) Biological effects of glucosinolates. In: Cutler HG (ed) Biologically active natural products, American Chemical Society, Washington DC, pp. 155–81

    Chapter  Google Scholar 

  • Coughtrie MW, Sharp S, Maxwell K, Innes NP (1998) Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 109:3–27

    Article  PubMed  CAS  Google Scholar 

  • Douglas Grubb C, Zipp BJ, Ludwig-Muller J, Masuno MN, Molinski TF, Abel S (2004) Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis. Plant J 40:893–908

    Article  PubMed  Google Scholar 

  • El Sayed G, Louveaux A, Mavratzotis M, Rollin P, Quinsac A (1996) Effects of glucobrassicin, epiprogoitrin and related breadkown products on locusts feeding: Schouwia purpurea and desert locust relationships. Entomol Exp Appl 78:231–6

    Article  CAS  Google Scholar 

  • Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, McManus ME (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  PubMed  CAS  Google Scholar 

  • Gidda SK, Varin L (2006) Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana. Plant Physiol Biochem 44:628–36

    Article  PubMed  CAS  Google Scholar 

  • Gidda SK, Miersch O, Levitin A, Schmidt J, Wasternack C, Varin L (2003) Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem 278:17895–900

    Article  PubMed  CAS  Google Scholar 

  • Gigolashvili T, Berger B, Mock HP, Muller C, Weisshaar B, Flugge UI (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J 2007 Apr 25; [Epub ahead of print]

    Google Scholar 

  • Glendening TM, Poulton JE (1990) Partial purification and characterization of a 3’-phosphoadenosine 5’-phosphosulfate: desulfoglucosinolate sulfotransferase from cress (Lepidium sativum). Plant Physiol 94:811–18

    Article  PubMed  CAS  Google Scholar 

  • Graser G, Oldham NJ, Brown PD, Temp U, Gershenzon J (2001) The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry 57:23–32

    Article  PubMed  CAS  Google Scholar 

  • Halkier BA (1999) Glucosinolates. In: Ikan R (ed): Naturally occurring glycosides: chemistry, distribution and biological properties, John Wiley & Sons Ltd, New York, pp. 193–223

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–33

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–5

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Boles JW (1997) The importance of 3’-phosphoadenosine 5’-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 11:404–18

    PubMed  CAS  Google Scholar 

  • Klarzynski O, Descamps V, Plesse B, Yvin JC, Kloareg B, Fritig B (2003) Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol Plant Microbe Interact 16:115–22

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Papenbrock J (2004) The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot 55:1809–20

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Reichelt M, Gershenzon J, Papenbrock J (2006) The three desulfoglucosinolate sulfotransferase proteins in Arabidopsis have different substrate specificities and are differentially expressed. FEBS J 273:122–36

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Kroymann J, Brown P, Figuth A, Pedersen D, Gershenzon J, Mitchell-Olds T (2001a) Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol 126:811–25

    Article  PubMed  CAS  Google Scholar 

  • Kliebenstein DJ, Lambrix VM, Reichelt M, Gershenzon J (2001b) Gene duplication in the diversification of secondary metabolism: tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–93

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinf 5:150–63

    Article  CAS  Google Scholar 

  • Lacomme C, Roby D (1996) Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol Biol 30:995–1008

    Article  PubMed  CAS  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  PubMed  CAS  Google Scholar 

  • Lillig CH, Schiffmann S, Berndt C, Berken A, Tischka R, Schwenn JD (2001) Molecular and catalytic properties of Arabidopsis thaliana adenylyl sulfate (APS)-kinase. Arch Biochem Biophys 392:303–10

    Article  PubMed  CAS  Google Scholar 

  • Louda S, Mole S (1991) Glucosinolates: chemistry and ecology. In: Rosenthal GA, Berenbaum MR (eds): Herbivores: their interaction with secondary plant metabolites, vol. 1 The Chemical Participants. Academic Press, San Diego, pp. 123–64

    Google Scholar 

  • Marsolais F, Varin L (1995) Identification of amino acid residues critical for catalysis and cosubstrate binding in the flavonol 3-sulfotransferase. J Biol Chem 270:30458–63

    Article  PubMed  CAS  Google Scholar 

  • Marsolais F, Gidda SK, Boyd J, Varin L (2000) Plant soluble sulfotransferases: Structural and functional similarity with mammalian enzymes. Rec Adv Phytochem 34:433–56

    Article  CAS  Google Scholar 

  • Marsolais F, Boyd J, Paredes Y, Schinas AM, Garcia M, Elzein S, Varin L (2007) Molecular and biochemical characterization of two brassinosteroid sulfotransferases from Arabidopsis, AtST4a (At2g14920) and AtST1 (At2g03760). Planta 225:1233–44

    Article  PubMed  CAS  Google Scholar 

  • Menard R, Alban S, de Ruffray P, Jamois F, Franz G, Fritig B, Yvin JC, Kauffmann S (2004) Beta-1, 3 glucan sulfate, but not beta-1, 3 glucan, induces the salicylic acid signaling pathway in tobacco and Arabidopsis. Plant Cell 16:3020–32

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Naur P, Halkier BA (2004) Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis. Plant J 37:770–7

    Article  PubMed  CAS  Google Scholar 

  • Mithen R (2001) Glucosinolates: biochemistry, genetics and biological activity. Plant Growth Regul 34:91–103

    Article  CAS  Google Scholar 

  • Mithen R, Lewis BG (1986) In vitro activity of glucosinolates and their products against Leptosphaeria maculans. Trans Br Mycol Soc 87:433–40

    Article  CAS  Google Scholar 

  • Morimitsu Y, Hayashi K, Nakagawa Y, Horio F, Uchida K, Osawa T (2000) Antiplatelet and anticancer isothiocyanates in Japanese domestic horseradish, wasabi. Biofactors 13:271–6

    Article  PubMed  CAS  Google Scholar 

  • Niehrs C, Beisswanger R, Huttner WB (1994) Protein tyrosine sulfation, 1993: an update. Chem Biol Interact 92: 257–71

    Article  PubMed  CAS  Google Scholar 

  • Piotrowski M, Schemenewitz A, Lopukhina A, Müller A, Janowitz T, Weiler EW, Oecking C (2004) desulfo-Glucosinolate sulfotransferases from Arabidopsis thaliana catalyzing the final step in biosynthesis of the glucosinolate core structure. J Biol Chem 49:50717–25

    Article  Google Scholar 

  • Rask L, Andreasson E, Ekbom B, Eriksson S, Pontoppidan B, Meijer J (2000) Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol Biol 42:93–113

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–9

    Article  PubMed  CAS  Google Scholar 

  • Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–71

    Article  PubMed  CAS  Google Scholar 

  • Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Truchet G, Denarie J, Prome JC (1991) Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell 67:1131–43

    Article  PubMed  CAS  Google Scholar 

  • Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5’-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–24

    Article  PubMed  CAS  Google Scholar 

  • Rouleau M, Marsolais F, Richard M, Nicolle L, Voigt B, Adam G, Varin L (1999) Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J Biol Chem 274:20925–30

    Article  PubMed  CAS  Google Scholar 

  • Skirycz A, Reichelt M, Burow M, Birkemeyer C, Rolcik J, Kopka J, Zanor MI, Gershenzon J, Strnad M, Szopa J, Mueller-Roeber B, Witt I (2006) DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. Plant J 47:10–24

    Article  PubMed  CAS  Google Scholar 

  • Smith DW, Johnson KA, Bingman CA, Aceti DJ, Blommel PG, Wrobel RL, Frederick RO, Zhao Q, Sreenath H, Fox BG, Volkman BF, Jeon WB, Newman CS, Ulrich EL, Hegeman AD, Kimball T, Thao S, Sussman MR, Markley JL, Phillips GN Jr (2004) Crystal structure of At2g03760, a putative steroid sulfotransferase from Arabidopsis thaliana. Proteins 57:854–7

    Article  PubMed  CAS  Google Scholar 

  • Suter M, von Ballmoos P, Kopriva S, den Camp RO, Schaller J, Kuhlemeier C, Schurmann P, Brunold C (2000) Adenosine 5’-phosphosulfate sulfotransferase and adenosine 5’-phosphosulfate reductase are identical enzymes. J Biol Chem 275:930–6

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Spertini D (2003) Desulfoglucosinolate sulfotransferases, sequences coding the same and uses thereof for modulating glucosinolate biosynthesis in plants. Patent WO 03/010318–A1, Concordia University, Canada (February, 6, 2003)

    Google Scholar 

  • Varin L, DeLuca V, Ibrahim RK, Brisson N (1992) Molecular characterization of two plant flavonol sulfotransferases. Proc Natl Acad Sci USA 89:1286–90

    Article  PubMed  CAS  Google Scholar 

  • Varin L, Marsolais F, Richard M, Rouleau M (1997) Biochemistry and molecular biology of plant sulfotransferases. FASEB J 11:517–25

    PubMed  CAS  Google Scholar 

  • Weinshilboum RM, Otterness DM (1994) Sulfotransferase enzymes. In: Kauffman FC (ed) Handbook of experimental pharmacology. Springer-Verlag, Berlin, pp. 45–78

    Google Scholar 

  • Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB (1997) Sulfotransferase molecular biology: cDNAs and genes. FASEB J 11:3–14

    PubMed  CAS  Google Scholar 

  • Weisburger EK, Butrum R (2002) Chemoprevention of cancer in humans by dietary means. In: Berdanier CD et al. (eds) Handbook of nutrition and food, Boca Raton, CRC Press, pp. 1011–28

    Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–70

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Kliebenstein DJ, Lambrix V, Reichelt M, Gershenzon J (2003) Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. Phytochemistry 37:101–25

    CAS  Google Scholar 

  • Yamazoe Y, Nagata K, Ozawa S, Kato R (1994) Structural similarity and diversity of sulfotransferases. Chem Biol Interact 92:107–17

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kensler TW, Cho CG, Posner GH, Talalay P (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci USA 91:3147–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, M., Papenbrock, J. (2008). Sulfotransferases and Their Role in Glucosinolate Biosynthesis. In: Khan, N.A., Singh, S., Umar, S. (eds) Sulfur Assimilation and Abiotic Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76326-0_7

Download citation

Publish with us

Policies and ethics