Skip to main content

Sulfur Assimilation and Cadmium Tolerance in Plants

  • Chapter
Sulfur Assimilation and Abiotic Stress in Plants

Sulfur (S) is an essential element for growth and physiological functioning of plants. S uptake and assimilation in higher plants are crucial factors determining crop yield, quality, and even resistance to various biotic and abiotic stresses. The sulfur assimilation pathway, which leads to cysteine (Cys) biosynthesis, involves high- and low-affinity sulfate transporters and several enzymes. The biochemical and genetic regulation of these pathways is affected by oxidative stress, sulfur deficiency, and heavy metal exposure. In fact thiols are the main form of reduced sulfur in plants to cope with heavy metal stress through enhanced synthesis of heavy metal chelating molecules, glutathione, and phytochelatins (PCs). Cadmium is the most potent activator of phytochelatins (PCs). The present chapter summarizes the available data and information on various aspects and control of enzymatic and nonenzymatic pathways in relation to sulfate assimilation-reduction and metabolism of organic reduced S-containing compounds when plants are challenged by cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad A, Khan I, Anjum NA, Diva I, Abdin MZ, Iqbal M (2005) Effect of timing of sulfur fertilizer application on growth and yield of rapeseed. J Plant Nutr 28:1049–59

    Article  CAS  Google Scholar 

  • Anjum NA (2006) Effect of abiotic stresses on growth and yield of Brassica campestris L. and [Vigna radiata (L.) Wilczek] under different sulfur regimes. Ph. D. thesis. Jamia Hamdard, New Delhi

    Google Scholar 

  • Archer MJ (1974) A sand culture experiment to compare the effects of sulphur on five wheat cultivars (Triticum aestivum L.). Aust J Agric Res 25:369–80

    Article  Google Scholar 

  • Arisi AC, Noctor G, Foyer CH, Jouanin L (1997) Modification of thiol contents in poplars (Populus tremulaxP. alba) overexpressing enzymes involved in glutathione synthesis. Planta 203:362–72

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense system in plants, CRC Press, Boca Raton, pp. 77–104

    Google Scholar 

  • Aulakh MS, Chhibba IM (1992) Sulphur in soils and responses of crops to its application in Punjab. Fert News 37:33–45

    CAS  Google Scholar 

  • Aulakh MS, Pasricha NS (1998) The effect of green manuring and fertilizer N application on enhancing crop productivity in mustard-rice rotation in semiarid subtropical regions. Euro J Agron 8:51–8

    Article  Google Scholar 

  • Bergmann L, Rennenberg H (1993) Glutathione metabolism in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulphur nutrition and assimilation in higher plants: regulatory, agricultural and environmental aspects, SPB Academic Publishing, The Hague, pp. 102–23

    Google Scholar 

  • Berkowitz O, Wirtz M, Wolf A, Kuhlmann J, Hell R (2002) Use of biomolecular interaction analysis to elucidate the regulatory mechanism of the cysteine synthase complex from Arabidopsis thaliana. J Biol Chem 277:30629–34

    Article  PubMed  CAS  Google Scholar 

  • Bick JA, Åslund F, Chen Y, Leustek T (1998) Glutaredoxin function for the carboxyl terminal domain of the plant-type 5ʹ-adenylylsulfate (APS) reductase. Proc Natl Acad Sci USA 95:8404–9

    Article  PubMed  CAS  Google Scholar 

  • Bielawski W, Joy KW (1986) Reduced and oxidized glutathione and glutathione-reductase activity in tissues of Pisum sativum. Planta 169:267–72

    Article  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Hölder S, Kammerer L, Kutchan TM, Mueller MJ, Xia Z-Q, Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92:4099–4105

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova N, Bork C, Hell R (1995) Cysteine biosynthesis in plants: isolation and functional identification of a cDNA encoding a serine acetyltransferase from Arabidopsis thaliana. FEBS Lett 358:43–7

    Article  PubMed  CAS  Google Scholar 

  • Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–62

    Article  PubMed  CAS  Google Scholar 

  • Bork C, Schwenn JD, Hell R (1998) Isolation and characterization of a gene for assimilatory sulfite reductase from Arabidopsis thaliana. Gene 212:147–53

    Article  PubMed  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–65

    Article  PubMed  CAS  Google Scholar 

  • Brunold C (1990) Regulation of sulfate sulfide. In: Renenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants: fundamental, environmental and agricultural aspects, SPB Academic Publishing, The Hague, pp. 13–31

    Google Scholar 

  • Brunold C (1993) Regulatory interactions between sulfate and nitrate assimilation. In: De Kok LJ, Stulen I, Renenberg H, Brunold C, Rauser W (eds) Sulfur nutrition and sulfur assimilation in higher plants: regulatory, agricultural and environmental aspects, SPB Academic Publishing, The Hague, pp. 125–38

    Google Scholar 

  • Brunold C, Rennenberg H (1997) Regulation of sulfur metabolism in plants: first molecular approaches. Prog Bot 58:164–86

    CAS  Google Scholar 

  • Brunold C, Suter M (1989) Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta 179:228–34

    Article  CAS  Google Scholar 

  • Brunold C, Von Ballmoss P, Hesse H, Fell D, Kopriva S (2003) Interactions between sulfur, nitrogen and carbon metabolism. In: Davidian J-C, Grill D, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Rennenberg H (eds) Sulfur transport and assimilation in plants: regulation, interaction and signaling, Backhuys Publishers, Leiden, pp. 45–56

    Google Scholar 

  • Buchanan BB (1980) The role of light in the regulation of chloroplast enzymes. Annu Rev Plant Physiol 31:341–74

    Article  CAS  Google Scholar 

  • Buchanan BB (1991) Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspectives on its discovery, present status, and future development. Arch Biochem Biophys 288:1–9

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Goldsbrough PB (1994) Increased activity of γ-glutamylcysteine synthetase in tomato cells selected for cadmium tolerance. Plant Physiol 106:233–9

    PubMed  CAS  Google Scholar 

  • Chen Y, Huerta AJ (1997) Effects of sulfur nutrition on photosynthesis in cadmium–treated barley seedlings. J Plant Nutr 20:845–56

    Article  CAS  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S, Gallie D R (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–30

    Article  PubMed  CAS  Google Scholar 

  • Chien HF, Lin CC, Wang JW, Chen CT, Kao CH (2002) Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul 36:41–7

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–86

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–33

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000a) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–32

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (2000b) Phytochelatin biosynthesis and function in heavy metal detoxification. Curr Opin Plant Biol 3:211–16

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2003) Metalothioneins and phytochelatins: Molecular aspects. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 177–88

    Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–82

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, May MJ, Howden R, Rolls B (1998) The glutathione-deficient, cadmiumsensitive mutant, cad2–1, of Arabidopsis thaliana is deficient in -glutamylcysteine synthetase. Plant J 16:73–8

    Article  PubMed  CAS  Google Scholar 

  • De Knecht JA, Koevoets PLM, Verkleij JAC, Ernst WHO (1992) Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene vulgaris (Moench) Garcke. New Phytol 122:681–8

    CAS  Google Scholar 

  • De Knecht JA, Van Baren N, ten Bookum WM, Wong Fong Sang HW, Koevoets PLM, Schat H, Verkleij JAC (1995) Synthesis and degradation of phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Sci 106:9–18

    Article  CAS  Google Scholar 

  • De Kok LJ, Castro A, Durenkamp M, Kralewska A, Posthumus FS, Elisabeth, Stuiver E, Yang L, Stulen I (2005) Pathways of plant sulphur uptake and metabolism-an overview. Landbauforschung Volkenrode 283:5–13

    CAS  Google Scholar 

  • De Tullio MC, Paciolla C, Dalla Vecchia F, Rascio N, D’Emerico S, De Gara L, Liso R, Arrigoni O (1999) Changes in onion root development induced by the inhibition of peptidyl-pronyl hydroxylase and influence of the ascorbtae system on cell division and elongation. Planta 209:424–34

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Jackson PJ, Lujan LD, Robinson NJ (1989) Poly (γ-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol 89:700–6

    Article  PubMed  CAS  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80

    Article  PubMed  CAS  Google Scholar 

  • Droux M (2003) Plant serine acetyltransferase: new insights for regulation of sulfur metabolism in plant cells. Plant Physiol Biochem 41:619–27

    Article  CAS  Google Scholar 

  • Droux M (2004) Sulfur assimilation and the role of sulphur in plant metabolism: a survey. Photosynth Res 79:331–48

    Article  PubMed  CAS  Google Scholar 

  • Droux M, Ruffet M-L, Douce R, Job D (1998) Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants: structural and kinetic properties of the free and bound enzymes. Eur J Biochem 225:235–45

    Article  Google Scholar 

  • Duke SH, Reisenauer HM (1986) Roles and requirements of sulfur in plant nutrition. In: Tabatabai MA (ed) Sulfur in agriculture, Agron Mongor, ASA, CSSA, SSA, Madison, WI, pp. 123–68

    Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C Presl.). Planta 214:635–40

    Article  PubMed  CAS  Google Scholar 

  • Ernst WHO (1996) Schermetalle. In: Brunold CH, Ruegsegger A, Braendle R (eds) Stress bei pflanzen, Verlag Paul Haupt, Berlin, pp. 191–219

    Google Scholar 

  • Ernst WHO (1998) Sulfur metabolism in higher plants: Potential for phytoremediation. Biodegradation 9:311–18

    Article  PubMed  CAS  Google Scholar 

  • Farago S, Brunold C (1994) Regulation of thiol contents in maize roots by intermediates and effectors of glutathione synthesis. J Plant Physiol 144:433–7

    CAS  Google Scholar 

  • Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21–5

    Article  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146:359–88

    Article  CAS  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109:1047–57

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Theodoulou FL, Delrot S (2001) The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci 6:486–92

    Article  PubMed  CAS  Google Scholar 

  • Frommer WB, Hummel S, Rentsch D (1994) Cloning of an Arabidopsis transporting protein related to nitrate and peptide transporters. FEBS letters 347:185–9

    Article  PubMed  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44:361–9

    CAS  Google Scholar 

  • Gallego M, Kogan MJ, Azpilicueta CE, Pena C, Tomaro ML (2005) Glutathione-mediated antioxidative mechanisms in sunflower (Helianthus annus L.) cells in response to cadmium stress. Plant Growth Regul 46:267–76

    Article  CAS  Google Scholar 

  • George AA, de Lumen BO (1991) A novel methionine-rich protein in soybean seed: Identification, amino acid composition, and N-terminal sequence. J Agric Food Chem 39:224–7

    Article  CAS  Google Scholar 

  • Gerwick BC, Ku SB, Black CC (1980) Initiation of sulfate activation: a variation in C4 photosynthesis plants. Science 209:513–15

    Article  PubMed  CAS  Google Scholar 

  • Glaeser H, Coblenz A, Kruczek R, Ruttke I, Ebert-Jung A, Wolf K (1991) Glutathione metabolism and heavy metal detoxification in Schizosaccharomyces pombe. Isolation and characterization of glutathione-deficient, cadmium-sensitive mutants. Curr Genet 19:207–13

    Article  CAS  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1996) Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 29:511–15

    Article  PubMed  CAS  Google Scholar 

  • Gratao PL, Gomes-Junior RA, Delite FS, Lea PJ, Azevedo RA (2006) Antioxidant stress responses of plants to cadmium. In: Khan NA, Samiullah (eds) Cadmium toxicity and tolerance in plants, Narosa Publishers, New Delhi, pp. 1–36

    Google Scholar 

  • Gries GE, Wagner GJ (1998) Association of nickel versus transport of cadmium and calcium in tonoplast vesicles of oat roots. Planta 204:390–6

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–42

    Article  PubMed  CAS  Google Scholar 

  • Gussarsson M (1994) Cadmium induced alterations in nutrient composition and growth of Betula pendula seedlings: The significance of fine roots as a primary target for cadmium toxicity. J Plant Nutr 17:2151–63

    Article  CAS  Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc Natl Acad Sci USA 93:13377–82

    Article  PubMed  CAS  Google Scholar 

  • Ha S-B, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–64

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford: Clarendon Press

    Google Scholar 

  • Hartmann T, Mult S, Suter M, Rennenberg H, Herschbach C (2000) Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremulaxP. alba) leaves. J Exp Bot 51:1077–88

    Article  PubMed  CAS  Google Scholar 

  • Hawkesford MJ, Wray JL (2000) Molecular genetics of sulfate assimilation. Adv Bot Res 33:159–223

    Article  CAS  Google Scholar 

  • Heiss S, Schäfer H, Haag-Kerwer A, Rausch T (1999) Cloning sulfur assimilation genes of Brassica juncea L.: cadmium differentially affects the expression of a putative low affinity sulfate transporter and isoforms of ATP sulfurylase and APS reductase. Plant Mol Biol 39:847–57

    Article  PubMed  CAS  Google Scholar 

  • Hell R (1997) Molecular physiology of plant sulfur metabolism. Planta 202:138–48

    Article  PubMed  CAS  Google Scholar 

  • Hell R, Bergmann L (1988) Glutathione synthetase in tobacco suspension cultures: catalytic properties and localization. Physiol Plant 72:70–6

    Article  CAS  Google Scholar 

  • Hell R, Bergmann L (1990) γ-Glutamylcysteine synthetase in higher plants: catalytic properties and subcellular localization. Planta 180:603–12

    Article  CAS  Google Scholar 

  • Hell R, Bogdanova N (1995) Characterization of a full-length cDNA encoding a serine acetyl-transferase from Arabidopsis thaliana. Plant Physiol 109:1498

    Google Scholar 

  • Hesse H, Lipke J, Altmann T, Hoefgen R (1999) Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol) lyase) from Arabidopsis thaliana. Amino Acids 16:113–31

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Nikiforova V, Gskieare B, Rainer Hoefgen R (2004) Molecular analysis and control of cysteine biosynthesis: integration of nitrogen and sulfur metabolism. J Exp Bot 55:1283–92

    Article  PubMed  CAS  Google Scholar 

  • Howarth JR, Roberts MA, Wray JL (1997) Cysteine biosynthesis in higher plants: A new member of the Arabidopsis thaliana serine acetyltransferase small gene family obtained by functional complementation of an Escherichia coli cysteine auxotroph. Biochem Biophys Acta 1350:123–7

    PubMed  CAS  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–66

    Article  PubMed  CAS  Google Scholar 

  • Hu SX, Lau KWK, Wu M (2001) Cadmium sequestration in Chalamydomonas reinhardtii. Plant Sci 161:987–96

    Article  CAS  Google Scholar 

  • Imsande J (2003) Sulphur nutrition and legume seed quality. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 295–304

    Google Scholar 

  • Inouhe M, Ito R, Ito S, Sasada N, Tohoyama H, Joho M (2000) Azuki bean cells are hypersensitive to cadmium and do not synthesize phytochelatins. Plant Physiol 123:1029–36

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Islam MS, Jahiruddin M, Hoque MS (1999) Effects of sulfur, zinc and boron on yield, yield components and nutrient uptake of wheat. Pak J Sci Ind Res 42:137–40

    CAS  Google Scholar 

  • Jamai A, Tommasini R, Martinoia E, Delrot S (1996) Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiol 111:1145–52

    PubMed  CAS  Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism and regulation of activity. J Biol Chem 279:33463–70

    Article  PubMed  CAS  Google Scholar 

  • Juang R-H, MacCue KF, Ow DW (1993) Two purine biosynthetic enzymes that are required for cadmium tolerance in Schizosaccharomyces pombe utilize cysteine sulfinate in vitro. Arch Biochem Biophys 304:392–401

    Article  PubMed  CAS  Google Scholar 

  • Keltjens WG, van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–26

    Article  CAS  Google Scholar 

  • Kerk NM, Feldman LJ (1995) A biochemical model for the initiation and maintenance of the quiescent center: implications for organization of root meristems. Development 121:2825–33

    CAS  Google Scholar 

  • Khan NA, Ahmad I, Singh S, Nazar R (2006) Variation in growth, photosynthesis and yield of five wheat cultivars exposed to cadmium stress. World J Agric Sci 2:223–6

    Google Scholar 

  • Khan NA, Samiullah, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–44

    Article  CAS  Google Scholar 

  • Klapheck S, Latus C, Bergmann L (1987) Localization of glutathione synthetase and distribution of glutathione in leaf of Pisum sativum L. J Plant Physiol 131:123–31

    CAS  Google Scholar 

  • Klapheck S, Schlunz S, Bergmann L (1995) Synthesis of phytochelatins and homo-phytochelatins in Pisum sativum L. Plant Physiol 107:515–21

    PubMed  CAS  Google Scholar 

  • Klonus D, Hofgen R, Willmitzer L, Riesmeier JW (1994) Isolation and characterization of two cDNA clones encoding ATP-sulfurylases from potato by complementation of a yeast mutant. Plant J 6:105–12

    Article  PubMed  CAS  Google Scholar 

  • Kneer R, Kutchan RM, Hochberger A, Zenk MH (1992) Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch Microbiol 157:305–10

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Buchert T, Fritz G, Suter M, Weber M, Benda R, Schaller J, Feller U, Schurmann P, Scurmann V, Trautwein AX, Kroneck PM, Brunold C (2001) Plant adenosine 5ʹ-phosphosulfate reductase is a novel iron-sulfur protein. J Biol Chem 276:42881–6

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Koprivova A (2003) Sulfate assimilation: a pathway which likes to surprise. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 87–112

    Google Scholar 

  • Kopriva S, Koprivova A (2004) Plant adenosine 5ʹ-phosphosulfate reductase: the past, the present, and the future. J Exp Bot 55:1775–83

    Article  PubMed  CAS  Google Scholar 

  • Kovari IA, Cobbett CS, Goldsbrough PB (1997) Expression of tomato γ-Glu-Cys synthetase in the Arabidopsis cad2 mutant restores cadmium tolerance. Plant Physiol 114:126

    Google Scholar 

  • Kunert KJ, Foyer CH (1993) Thiol/disulphide exchange in plants. In: De Kok LJ (ed) Sulfur nutrition and assimilation in higher plants, SPB Academic Publishing The Hague, The Netherlands, pp. 139–51

    Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulphurylase activity and SO4 2− uptake in intact canola. Role of phloem-translocated glutathione. Plant Physiol 111:147–57

    PubMed  CAS  Google Scholar 

  • Larsson EH, Asp H, Bornman JF (2002) Influence of prior Cd2+ exposure on the uptake of Cd2+ and other elements in the phytochelatin-deficient mutant, cad1–3, of Arabidopsis thaliana. J Exp Bot 53:447–53

    Article  PubMed  CAS  Google Scholar 

  • Le Faucheur S, Behra R, Sigg L (2005) Thiol and metal contents in periphyton exposed to elevated copper and zinc concentrations: a field and microcosm study. Environ Sci Technol 39:8099–8107

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Leustek T (1999) The affect of cadmium on sulfate assimilation enzymes in Brassica juncea. Plant Sci 141:201–7

    Article  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick J-A, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–65

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Murillo M, Cervantes M (1994). Cloning of a cDNA in coding ATP sulfurylase from Arabidopsis thaliana by functional expression in Saccharomyces cerevisiae. Plant Physiol 105: 897–902

    Article  PubMed  CAS  Google Scholar 

  • Leustek T, Saito K (1999) Sulfate transport and assimilation in plants. Plant Physiol 120:637–43

    Article  PubMed  CAS  Google Scholar 

  • Li JJ, Saidha T, Schiff JA (1991) Purification and properties of two forms of ATP sulfurylase from Euglena. Biochim Biophys Acta 1078:68–76

    PubMed  CAS  Google Scholar 

  • Lima AIS, Pereira SIA, Figueira EMAP, Caldeira GCN, Caldeira HDQM (2006) Cadmium detoxification in roots of Pisum sativum seedlings: relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot 55:149–62

    Article  CAS  Google Scholar 

  • Liso R, Innocenti AM, Bitoni MB, Arrigoni O (1988) Ascorbic acid induced pregrssion of quiescent centre cells from G1 to S phase. New Phytol 110:469–71

    Article  CAS  Google Scholar 

  • Lunn J, Droux M, Martin J, Douce R (1990) Localization of ATP sulfurylase and O-acetylserine (thiol) lyase in spinach leaves. Plant Physiol 94:1345–52

    Article  PubMed  CAS  Google Scholar 

  • Maier EA, Matthews RD, McDowell JA, Walden RR, Ahner BA (2003) Environmental cadmium levels increase phytochelatin and glutathione in lettuce grown in a chelator-buffered nutrient solution. J Environ Qual 32:1356–64

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Leaver CJ (1994) Arabidopsis thaliana γ-glutamylcysteine synthetase is structurally unrelated to mammalian, yeast and E. coli homologs. Proc Natl Acad Sci USA 91:10059–63

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Parker JE, Daniels MJ, Leaver CJ, Cobbett CS (1996) An Arabidopsis mutant depleted in glutathione shows unaltered responses to fungal and bacterial pathogens. Mol Plant-Microbe Interact 9:349–56

    CAS  Google Scholar 

  • May MJ, Vernoux T, Leaver C, Van Montagu M, Inze D (1998) Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot 49:649–67

    Article  CAS  Google Scholar 

  • McLaughlin, MJ, Parker DR, Clarke JM (1999) Metals and micronutrients: Food safety issues. Field Crops Res 60:143–63

    Article  Google Scholar 

  • Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of 2 metallthioneins and γ-glutamyl-transferase peptides in Candida glabrata. Proc Natl Acad Sci USA 85:8815–19

    Article  PubMed  CAS  Google Scholar 

  • Meinke DW, Chen J, Beachy RN (1981) Expression of storage-protein genes during soybean seed development. Planta 153:130–9

    Article  CAS  Google Scholar 

  • Memon AR, Ozdemir A, Aktoprakligi D (2001) Heavy metal accumulation in plants. Biotech Biotechnol Equip 15:44–8

    Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–71

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Moreno-Sanchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238:919–36

    Article  PubMed  CAS  Google Scholar 

  • Meyer Y, Verdoucq L, Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4:388–94

    Article  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–8

    Article  PubMed  CAS  Google Scholar 

  • Miyake T, Kanayama M, Sammoto H, Ono B (2002) A novel cis-acting cysteine-responsive regulatory element of the gene for the high-affinity glutathione transporter of Saccharomyces cerevisiae. Mol Genet Gen 266:1004–11

    CAS  Google Scholar 

  • Mobin M and Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–10

    Article  PubMed  CAS  Google Scholar 

  • Murillo M, Leustek T (1995) ATP sulfurylase from Arabidopsis thaliana and Escherichia coli are functionally equivalent but structurally and kinetically divergent. Nucleotide sequence of two ATP sulfurylase cDNAs from Arabidopsis thaliana and analysis of a recombinant enzyme. Arch Biochem Biophys 323:195–204

    Article  PubMed  CAS  Google Scholar 

  • Mutoh N, Hayashi Y (1988) Isolation of mutants of Schizosaccharomyces pombe unable to synthesize cadystin, small cadmium-binding peptides. Biochem Biophys Res Commun 151:32–9

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Hayama A, Masada M, Fukushima K, Tamura G (1988) Purification and some properties of plant serine acetyltransferase. Plant Cell Physiol 29:689–93

    CAS  Google Scholar 

  • Nakamura K, Tamura G (1990) Isolation of serine acetyltransferase complexed with cysteine synthase from Allium tuberosum. Agric Biol Chem 53:2537–8

    Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Foyer CH (1998b) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol118:471–82

    Article  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998a) Glutathione: biosynthesis, metabolism, and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–47

    Article  CAS  Google Scholar 

  • Noctor G, Gomez LA, Vanacker H, Foyer CH (2002) Interactions between biosynthesis, comparmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53:1283–3304

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Strohm M, Jouanin L, Kunert K-J, Foyer CH, Rennenberg H (1996) Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol 112:1071–8

    PubMed  CAS  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–45

    Article  PubMed  CAS  Google Scholar 

  • Noji M, Saito K (2003) Sulfur amino acids: biosynthesis of cysteine and methionine. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 135–44

    Google Scholar 

  • Noji M, Takagi Y, Kimura N, Inoue K, Saito M, Horikoshi M, Saito F, Takahashi H, Saito K (2001) Serine acetyltransferase involved in cysteine biosynthesis from spinach: Molecular cloning, characterization and expression analysis of cDNA encoding a plasticic isoform. Plant Cell Physiol 42:627–34

    Article  PubMed  CAS  Google Scholar 

  • Oritz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–9

    Google Scholar 

  • Paek NC, Sexton PJ, Naeve SL, Shibles R (2000) Differential accumulation of soybean seed storage protein subunits in response to sulfur and nitrogen nutritional sources. Plant Prod Sci 3:268–74

    Article  Google Scholar 

  • Pasricha NS, Aulakh MS, Bahl GS, Baddesha HS (1987) Nutritional Requirements of Oilseed and Pulse Crops in Punjab. Res Bull 15. PAU, Ludhiana

    Google Scholar 

  • Passera C, Ghisi R (1982) ATP sulphurylase and O-acetylserine sulphydrylase in isolated mesophyll protoplasts and bundle sheath strands of S-deprived maize leaves. J Exp Bot 33:432–8

    Article  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:53–162

    Article  Google Scholar 

  • Ramos I, Esteban E, Lucena JJ, Garate A (2002) Cadmium uptake and subcellular distribution in plants of Lactica sp. Cd-Mn interaction. Plant Sci 162:761–7

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Scebba F, Careri M, Zagnoni I, Predieri G, Pagliari M, Sanita di Toppi L (2005) Oxidative stress and phytochelatin characterisation in bread wheat exposed to cadmium excess. Plant Physiol Biochem 43:45–54

    Article  PubMed  CAS  Google Scholar 

  • Rausch T, Wachter A (2005)) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–9

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol 109:1141–9

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants: The case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  • Rawlins MR, Leaver CJ, May MJ (1995) Characterisation of an Arabidopsis thaliana cDNA encoding glutathione synthetase. FEBS Letters 376:81–6

    Article  PubMed  CAS  Google Scholar 

  • Rennenberg H (1983) Role of O-acetylserine in hydrogen sulfide emission from pumpkin leaves in response to sulfate. Plant Physiol 73:560–5

    Article  PubMed  CAS  Google Scholar 

  • Renosto F, Patel HC, Martin RL, Thomassian C, Zimmerman G, Segel IH (1993) ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf. Arch Biochem Biophys 307:272–85

    Article  PubMed  CAS  Google Scholar 

  • Roberts MA, Wray JL (1996) Cloning and characterization of an Arabidopsis cDNA clone encoding an organellar isoform of serine acetyltransferase. Plant Mol Biol 30:1041–9

    Article  PubMed  CAS  Google Scholar 

  • Rotte C (1998) Subcellular localization of sulphur assimilation enzymes in Arabidopsis thaliana (L.) HEYNH. Diplomarbeit thesis. Carl von Ossietzky Univ. Oldenburg, Germany. pp. 87

    Google Scholar 

  • Rotte C, Leustek T (2000) Differential subcellular localization and expression of ATP sulfurylase and 5ʹ-adenylylsulfate reductase during ontogenesis of Arabidopsis leaves indicates that cytosolic and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol 124:715–24

    Article  PubMed  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot J-P (2002) Exploring the active site of plant glutaredoxin by site-directed mutagenesis. FEBS letters 511:145–9

    Article  PubMed  CAS  Google Scholar 

  • Ruegsegger A, Brunold C (1992) Effect of cadmium on γ- glutamylcysteine synthesis in maize seedlings. Plant Physiol 99:428–33

    Article  PubMed  CAS  Google Scholar 

  • Ruegsegger A, Schmutz D, Brunold C (1990) Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol 93:1579–84

    Article  PubMed  CAS  Google Scholar 

  • Ruffet M-L, Lebrum M, Droux M, Douce R (1995) Subcellular distribution of serine actetyl transferase from Pidum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform. Eur J Biochem 227:500–9

    Article  PubMed  CAS  Google Scholar 

  • Rusch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–9

    Article  CAS  Google Scholar 

  • Russo T, Zambrano N, Esposito F, Ammendola R, Cimino F, Fiscella M, Jackman J, O’Connor M, Anderson CW, Apella E (1995) A p53-independent pathway for activation of WAF1/C1P1 expression following oxidative stress. J Biol Chem 270:29386–91

    Article  PubMed  CAS  Google Scholar 

  • Saito K (1999) Biosynthesis of cysteine. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology, Marcel Dekker Inc, New York, pp. 267–91

    Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–95

    PubMed  CAS  Google Scholar 

  • Saito K, Yokoyama H, Noji M, Murakoshi I (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. J Biol Chem 270:16321–6

    Article  PubMed  CAS  Google Scholar 

  • Samiullah, Khan NA, Nazar R, Ahmad I (2007) Physiological basis for reduced photosynthesis and growth of cadmium-treated wheat cultivars differing in yield potential. J Food Agric Environ 5:375–7

    CAS  Google Scholar 

  • Sanchez-Fernandez R, Fricker M, Corben LB, White NS, Sheard N, Leaver CJ, Van Montagu M, Inze D, May MJ (1997) Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc Natl Acad Sci USA 94:2745–50

    Article  PubMed  CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–30

    Article  Google Scholar 

  • Schafer HJ, Haag-Kerwer A, Rausch T (1998) cDNA cloning and expression analysis of genes encoding GSH synthesis in roots of the heavy metal accumulator Brassica juncea L.: evidence or Cd-induction of a putative mitochondrial γ-glutamylcysteine synthetase isoform. Plant Mol Biol 37: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Scheller HB, Huang B, Hatch E, Goldsbrough PB (1987) Phytochelatin synthesis and glutathione levels in response to heavy metals in tomato cells. Plant Physiol 85:1031–5

    Article  PubMed  CAS  Google Scholar 

  • Schmutz D, Brunold C (1984) Intercellular localization of assimilatory sulfate reduction in leaves of Zea mays and Triticum aestivum. Plant Physiol 74:866–70

    Article  PubMed  CAS  Google Scholar 

  • Schneider A, Martini N, Rennenberg H (1992) Reduced glutathione (GSH) transport in cultured tobacco cells. Plant Physiol Biochem 30:29–38

    CAS  Google Scholar 

  • Schroder P, Fischer C, Debus R, Wenzel A (2003) Reaction of detoxification mechanisms in suspension cultured spruce cells (Picea abies L. Karst.) to heavy metals in pure mixture and soil eluates. Environ Sci Pollut Res 10:225–34

    Article  CAS  Google Scholar 

  • Schurmann P, Jacquot J-P (2000) Plant thioredoxin systems revisited. Annu Rev Plant Physiol Plant Mol Biol 51:371–400

    Article  PubMed  CAS  Google Scholar 

  • Segel IH, Renosto F, Seubert PA (1987) Sulfate-activating enzymes. Methods Enzymol 143:334–49

    Article  PubMed  CAS  Google Scholar 

  • Setya A, Murillo M, Leustek T (1996) Sulfate reduction in higher plants: molecular evidence for a novel 5-adenylylphosphosulfate (APS) reductase. Proc Natl Acad Sci USA 93:13383–8

    Article  PubMed  CAS  Google Scholar 

  • Shaul O, Mironov V, Burssen S, Van Montagu MV, Inze D (1996) Two Arabidopsis cyclin promoters mediate distinctive transcriptional osscilation in synchronized tobacco 3Y–2 cells. Proc Natl Acad Sci USA 93:4868–72

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Pandya MJ (1999) The 2S albumin storage proteins. In: Shewry PR, Casey R (eds) Seed proteins, Kluwer Academic Publishers, Dordrecht, pp. 563–86

    Google Scholar 

  • Siedlecka A, Krupa Z, Samuelsson G, Oquist G, Gardestrom P (1997) Primary carbon metabolism in Phaseolus vulgaris plants under Cd(II)/Fe interaction. Plant Physiol Biochem 35:951–7

    CAS  Google Scholar 

  • Singh S, Khan NA, Nazar R, Anjum NA (2007) Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress. Am J Plant Physiol 3:25–32

    Google Scholar 

  • Smirnoff N (1996) The Function and metabolism of ascorbic acid in plants. Ann Bot 78:661–9

    Article  CAS  Google Scholar 

  • Smith IK (1985) Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol 79:1044–7

    Article  PubMed  CAS  Google Scholar 

  • Smith IK, Kendall AC, Keys AJ, Turner JC, Lea PJ (1984) Increased levels of glutathione in a catalase deficient mutant of barley (Hordeum vulgare L.) Plant Sci Letters 37:29–33

    Article  CAS  Google Scholar 

  • Song W, Steiner HY, Zang L, Naider F, Becker JM, Stacey G (1996) Cloning of a second Arabidopsis peptide transport gene. Plant Physiol 110:171–8

    Article  PubMed  CAS  Google Scholar 

  • Speiser DM, Abrahamson SL, Banuelos G, Ow DW (1992) Brassica juncea produces a phytochelatin-cadmiumsulfide complex. Plant Physiol 99:817–21

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Tripathi RD, Awivedi UN (2004) Synthesis of phytocheltins and modulation of antioxidants in responses to cadmium stress in Cuscuta reflexa–an angiospermic parasite. J Plant Physiol 161:665–74

    Article  PubMed  CAS  Google Scholar 

  • Steiner HY, Song W, Zhang L, Naider F, Becker JM, Stacey G (1994) An Arabidopsis peptide transporter is a member of a new class of membrane transport proteins. Plant Cell 6:1289–99

    Article  PubMed  CAS  Google Scholar 

  • Stewart EJ, Aslund F, Beckwith J (1998) Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 17:5543–50

    Article  PubMed  CAS  Google Scholar 

  • Strohm M, Jouanin L, Kunert KJ, Pruvost C, Polle A, Foyer CH, Rennenberg H (1995) Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. Plant J 7:141–5

    Article  CAS  Google Scholar 

  • Suter M, Von Ballmoos P, Kupriva S, Opdencamp R, Schaller J, Kuhlemeier C, Scurmann P, Brunold C (2000) Adenosine 5-sulphosulfate sulpho transferease and adenosine 5-phospho sulpho reductase are identical enzymes. J Biol Chem 275:930–6

    Article  PubMed  CAS  Google Scholar 

  • Syers JK, Skinner RJ, Curtin D (1987) Soil and fertilizer sulphur in UK agriculture. Proc Fertilizer Society No. 379, The Fertilizer Society, Peterborough

    Google Scholar 

  • Takagi M, Satofuka H, Amano S, Mizuno H, Eguchi Y, Kazumasa H, Kazuhisa M, Fukui K, Imanaka T (2002) Cellular toxicity of cadmium ions and their detoxification by heavy metal spesific plant peptides, phytochelatins, expressed in mammalian cells. J Biochem. 131:233–9

    PubMed  CAS  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, de Almeida Engler J, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–7

    Article  PubMed  CAS  Google Scholar 

  • Tandon HLS (1991) Sulphur Research and Agricultural Production in India, 3rd Edition. The Sulphur Institute, Washington DC

    Google Scholar 

  • Tausz M, Gullner G, Komives T, Grill D (2003) The role of thiols in plant adaptation to environmental stress. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 221–44

    Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension culture under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–16

    Article  CAS  Google Scholar 

  • Tukendorf A, Rauser WE (1990) Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci 70:155–66

    Article  CAS  Google Scholar 

  • Ullman P, Gondet L, Potier S, Bach TJ (1996) Clonning of Arabidopsis thaliana glutathione synthetase (GSH2) by functional complementation of a yeast gsh2 mutatnt. Eur J Biochem 236:662–9

    Article  Google Scholar 

  • Urano Y, Manabe T, Noji M, Saito K (2000) Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum. Gene 257:269–77

    Article  PubMed  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals - Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–15

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase - Blocked thiols are sufficient for PC synthase – catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275:31451–9

    Article  PubMed  CAS  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, KraÈhenbuÈhl U, Op den Camp R, Brunold C (2002) Flux control of sulfate assimilation in Arabidopsis thaliana: adenosine 5-phosphosulfate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31:729–40

    Article  PubMed  CAS  Google Scholar 

  • Verkleij JAC, Sneller FEC, Schat H (2003) Metallothioneins and Phytochelatins: Ecophysiological aspects. In: Abrol YP, Ahmad A (eds) Sulphur in plants, Kluwer Academic Publishers, The Netherlands, pp. 163–76

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inze D, May MJ, Sung ZR (2001) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembyronic root development. Plant Cell 12:97–109

    Article  Google Scholar 

  • Vogeli-Lange R, Wagner GJ (1996) Relationship between cadmium, glutathione and cadmium-binding peptides (phytochelatins) in leaves of intact tobacco seedlings. Plant Sci 114:11–18

    Article  Google Scholar 

  • von Arb C, Brunold C (1986) Enzymes of assimilatory sulfate reduction in leaves of Pisum sativum: activity changes during ontogeny and in vivo regulation by H2S and cysteine. Physiol Plant 67:81–6

    Article  Google Scholar 

  • Wachter A, Wolf S, Steininger H, Bogs J, Rausch T (2005) Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant J 41:15–30

    Article  PubMed  CAS  Google Scholar 

  • Walker KC, Booth EJ (1992) Sulfur research on oilseed rape in Scotland. Sulfur Agric 16:15–19

    Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–16

    Article  PubMed  CAS  Google Scholar 

  • Wojcik M, Skorzynska-Polit E, Tukiendorf A (2006) Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regul 48:145–55

    Article  CAS  Google Scholar 

  • Wojcik M, Vangronsveld J, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ Exp Bot 53:151–61

    CAS  Google Scholar 

  • Wu FB, Zhang G-P (2002a) Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bull Environ Contam Toxicol 69:219–27

    Article  PubMed  CAS  Google Scholar 

  • Wu FB, Zhang G-P (2002b) Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. J Plant Nutr 25:2745–61

    Article  CAS  Google Scholar 

  • Xiang C, Bertrand D (2000) Glutathione synthesis in Arabidopsis: Multilevel controils coordinate responses to stress. In: Brunold C, et al. (eds) Sulfur nutrition and sulfur assimilation in higher plants, Paul Haupt, pp. 409–12

    Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes co-ordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant Cell 10:1539–50

    Article  PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen EM, Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126:564–74

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Harada E, Koizumi N, Sano H (1999) Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. Biosci Biotechnol Biochem 63:762–66

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Onda Y, Ashikari T, Tanaka Y, Kusumi T, Hase T (2000) Analysis of reductant supply systems for ferredoxin-dependent sulfite reductase in photosynthetic and nonphotosynthetic organs of maize. Plant Physiol 122:887–94

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

  • Zhang G-P, Motohiro F, Hitoshi S (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res 77:93–9

    Article  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–9

    Article  CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Tarun A, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–77

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anjum, N.A., Umar, S., Singh, S., Nazar, R., Khan, N.A. (2008). Sulfur Assimilation and Cadmium Tolerance in Plants. In: Khan, N.A., Singh, S., Umar, S. (eds) Sulfur Assimilation and Abiotic Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76326-0_13

Download citation

Publish with us

Policies and ethics