Skip to main content

Recent Advances in Understanding of Plant Responses to Excess Metals: Exposure, Accumulation, and Tolerance

  • Chapter

Toxicity has been the primary driver of research on excess metals; but in recent decades, the biology of metal accumulation/hyperaccumulation became the main focus of research. The main aim is to develop phytoremedial techniques for diminishing the environmental impact of metal pollution. From the toxicological point of view, only the bioavailable soil metal fractions can affect morphology and/or physiology; therefore methods for quantification of metal stress in plants are continuously evolving. Phenotypic plasticity encoded by fixed genetic components in different species determines a plant’s responses to excess metals. Metal exclusion, accumulation, and hyperaccumulation are major plant strategies when facing excess metals, with metal tolerance mechanisms as a prerequisite for coping with the metal(s) in question. Considerable research efforts are being directed into the field of biotechnology of metal hyperaccumulation, but the complexity of plant responses to excess metals makes this task extremely difficult.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Ghany SE, Muller-Moule P, Niyogi KK, Pilon M, Shikanai T (2005) Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell 17:1233–51

    Article  PubMed  CAS  Google Scholar 

  • Ahn SJ, Rengel Z, Matsumoto H (2004) Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytol 162:71–9

    Article  CAS  Google Scholar 

  • Ager FJ, Ynsa MD, Dominguez-Solis JR, Gotor C, Respaldiza MA, Romero LC (2002) Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instrum Meth B 189:494–8

    Article  CAS  Google Scholar 

  • Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Penarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–36

    Article  PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–82

    Article  PubMed  CAS  Google Scholar 

  • Assunça¯o AGL, Schat H, Arts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–60

    Article  CAS  Google Scholar 

  • Bagnaresi P, Thoiron S, Mansion M, Rosignol M, Pupillo P, Briat JF (1999) Cloning and characterization of a maize cytochrome-b(5) reductase with Fe3+- chelate reduction capability. Biochem J 338:499–505

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–54

    Article  CAS  Google Scholar 

  • Baker, AJM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132:618–28

    Article  PubMed  CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–68

    PubMed  CAS  Google Scholar 

  • Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2004) Quantitative cellular localisation of nickel in leaves and stems of the hyperaccumulator plant Stackhousia tryonii Bailey using nuclear-microprobe (Micro-PIXE) and energy dispersive X-ray microanalysis (EDXMA) techniques. Funct Plant Biol 31:1–14

    Article  CAS  Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. CR Acad Sci Paris 322:43–54

    CAS  Google Scholar 

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–82

    Article  PubMed  CAS  Google Scholar 

  • Cieslinski G, Van Rees KC, Szmigielska AM, Huang PM (1998) Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–17

    Article  CAS  Google Scholar 

  • Clemens S, Antosiewicz DM, Ward JM, Schachtman DP, Schroeder JI (1998) The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proc Natl Acad Sci USA 95:12043–8

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–15

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie 88:1707–19

    Article  CAS  Google Scholar 

  • Cobbett C (2003) Heavy metals and plants – model systems and hyperaccumulators. New Phytol 159:289–93

    Article  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport through plants. Curr Opin Plant Biol 9:322–30

    Article  PubMed  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56: 765–75

    Article  PubMed  CAS  Google Scholar 

  • Cunningham LM, Collings FW, Hutchinson TC (1975) Physiological and biochemical aspects of cadmium toxicity in soybean. I. Toxicity symptoms and autoradiographic distribution of Cd in roots, stems and leaves. In: International conference on heavy metals in the environment, Symposium Proceedings, Institute for Environmental Studies, Universityof Toronto, Ontario, Canada 2: 97–120

    Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–55

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–9

    Article  PubMed  CAS  Google Scholar 

  • Dahmani-Muller HF, van Oort B, Gelie M, Balabane (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Poll 109:231–8

    Article  CAS  Google Scholar 

  • Delhaize E, Kataoka T, Hebb DM, White RG, Ryan PR (2003) Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance. Plant Cell 15:1131–42

    Article  PubMed  CAS  Google Scholar 

  • Delisle G, Champoux M, Houde M, (2001) Characterization of oxidase and cell death in Al- sensitive and tolerant wheat roots. Plant Cell Physiol 42:324–33

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U (2005) Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS Lett 579:4165–74

    Article  PubMed  CAS  Google Scholar 

  • DiDonato RJ Jr, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis YELLOW STRIPE-LIKE2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–14

    Article  PubMed  CAS  Google Scholar 

  • Dräger DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins cosegregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–39

    Article  PubMed  CAS  Google Scholar 

  • Eren E, Argüello JM (2004) Arabidopsis HMA2, a divalent heavy metaltransporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol 136:3712–23

    Article  PubMed  CAS  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–48

    CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1992) Solute transport in plants. Chapman & Hall, Edmundsbury

    Google Scholar 

  • Frey B, Keller C, Zierold K, Schulin R (2000) Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 23:675–87

    Article  CAS  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J- F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    Article  PubMed  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci USA 100:10118–23

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Azcón-Aguillar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol, N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–40

    Article  PubMed  CAS  Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–8

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH 1987. Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–43

    Article  PubMed  CAS  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506

    Article  PubMed  CAS  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Hernández-Allica J, Garbisu C, Becerril JM, Barrutia O, Garcia-Plazola JI, Zhao FJ, McGrath SP (2006) Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ 29:1422–9

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–46

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T, Kieber JJ, Hirayama N, Kogan M, Guzman P, Nourizadeh S, Alonso JM, Dailey WP, Dancis A, Ecker JR (1999) Responsive-to-antagonist1, a Menkes/Wilson diseaserelated copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97:383–93

    Article  PubMed  CAS  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–39

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–14

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+- phytosiderophore and as Fe2+. Plant J 45:335–46

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Leycal C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–60

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–34

    Article  CAS  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–51

    Article  PubMed  CAS  Google Scholar 

  • Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M (2004) Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 45:1749–58

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–24

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith AC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature (London) 379:635–8

    Article  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–53

    Article  PubMed  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotech 16:133–41

    Article  PubMed  CAS  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–11

    Article  Google Scholar 

  • Küpper H, Mijovilovich A, Klaucke-Mayer W, Kroneck PHM (2004) Tissue and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens Ganges ecotype revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–57

    Article  PubMed  CAS  Google Scholar 

  • Lane T, Morel F (2000) A biological function for cadmium in marine diatoms. P Natl Acad Sci USA 97:4627–31

    Article  CAS  Google Scholar 

  • Lanquar V, Lelievre F, Bolte S, Hames C, Alcon C, Neumann D, Vansuyt G, Curie C, Schroder A, Kramer U (2005) Mobilization of vacuolar iron by AtNramp3 and AtNramp4 is essential for seed germination on low iron. EMBO J 24:4041–51

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–9

    Article  PubMed  CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–20

    Article  PubMed  CAS  Google Scholar 

  • Llugany M, Lombini A, Poschenrieder C, Barcelo J (2003) Different mechanisms account for enhanced copper resistance in Silene armeria from mine spoil and serpentine sites. Plant Soil 251:55–63

    Article  CAS  Google Scholar 

  • Leyval C, Joner EJ (2001) Bioavailability of heavy metals in the mycorrhizosphere. In: Gobran RG, Wenzel WW, Lombi E (eds) Trace metals in the rhizosphere, CRC Press, Florida, pp 165–85

    Google Scholar 

  • Le Jean M, Schikora A, Mari S, Briat JF, Curie C (2005) A loss-of function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44:769–82

    Article  PubMed  CAS  Google Scholar 

  • Ligaba A, Yamaguchi M, Shen H, Sasaki T, Yamamoto Y, Matsumoto H (2004) Phosphorus deficiency enhances plasma membrane H+-ATPase activity and citrate exudation in greater purple lupin (Lupinus pilosus). Funct Plant Biol 31:1075–83

    Article  CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–96

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, 1995. Mineral nutrition of higher plants, 2nd ed. Academic Press, London

    Google Scholar 

  • Mäser P, Thomine S, Schroeder I, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic Relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–67

    Article  Google Scholar 

  • McGrath SP, Sidoli CMD, Baker AJM and Reeves RD (1993) The potential for the use of metal-accumulating plants for the in situ decontamination of metal-polluted soils. In: Eijsackers HJP, Hamers T (eds) Integrated soil and sediment research: a basis for proper protection, Kluwer Academic Publishers, Dordrecht, pp 673–6

    Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 180:153–9

    Article  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–14

    Article  CAS  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    Article  PubMed  CAS  Google Scholar 

  • Moore MR (2003) Risk assessment in environmental contamination and environmental health. In: Naidu R, Gupta VVSR, Rogers S, Kookana RS, Bolan NS, Adriano DC (eds) Bioavailability, toxicity and risk relationships in ecosystems, Science Publishers, Inc., Enfield, pp. 3–19

    Google Scholar 

  • Naidu R, Rogers S, Gupta VVSR, Kookana RS, Bolan NS, Adriano DC (2003) Bioavailability of metals in the soil plant environment and its potential role in risk assessment. In: Naidu R, Gupta VVSR, Rogers S, Kookana RS, Bolan NS, Adriano DC (eds) Bioavailability, toxicity and risk relationships in ecosystems, Science Publishers, Inc., Enfield, pp. 21–57

    Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–60

    Article  PubMed  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  PubMed  CAS  Google Scholar 

  • Pianelli K, Mari S, Marque’s L, Vacchina V, Lobinski R, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Trans Res 14:739–48

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment, John Whiley & Sons, Inc., NY, pp. 193–229

    Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminates soils (Nato Science Series: IV: Earth and Environmental Sciences), Springer-Verlag, pp 25–52

    Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: Indications for the direction of phytostabilisation? Environ Pollut 144:976–84

    Article  PubMed  CAS  Google Scholar 

  • Roberts LA, Pierson AJ, Panaviene Z, Walker EL (2004) Yellow stripe1, Expanded roles for the maize iron-phytosiderophore transporter. Plant Physiol 135:112–20

    Article  PubMed  CAS  Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: an ecological approach. Plant Soil 130:127–34

    Article  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Ann Rev Plant Physiol Plant Mol Biol 52:527–60

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian Mustard. Plant Physiol 109:1427–33

    PubMed  CAS  Google Scholar 

  • Salt DE, Krämer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons Inc, New York, pp. 193–229

    Google Scholar 

  • Salt D (2001) Responses and adaptations of plants to metal stress. In: Hawkesford MJ, Buchner P (eds) Molecular analysis of plant adaptation to the environment. Kluwer Academic Publishers, Dodrecht, pp. 159–79

    Google Scholar 

  • Sancenón V, Puig S, Mira H, Thiele DJ, Penarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–87

    Article  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–55

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–6

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–74

    Article  PubMed  CAS  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker P (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–92

    Article  PubMed  CAS  Google Scholar 

  • Seigneurin-Berny D, Gravot A, Auroy P, Mazard C, Kraut A, Finazzi G, Grunwald D, Rappaport F, Vavasseur A, Joyard J et al (2006) HMA1, a new Cu-ATPase of the chloroplast envelope, is essential for growth under adverse light conditions. J Biol Chem 281:2882–92

    Article  PubMed  CAS  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–44

    Article  CAS  Google Scholar 

  • Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, a P-type ATPase of Arabidopsis, functions in copper transport in chloroplasts. Plant Cell 15:1333–46

    Article  PubMed  CAS  Google Scholar 

  • Stephan UW, Schmidke I, Pich A (1994) Phloem translocation of Fe, Cu, Mn, and Zn in Ricinus seedlings in relation to the concentrations of nicotianamine, an endogenous chelator of divalent metal ions, in different seedling parts. Plant Soil 165:181–8

    Article  CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–6

    Article  PubMed  CAS  Google Scholar 

  • Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNramp3, a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–95

    Article  PubMed  CAS  Google Scholar 

  • Tsao DT (2003) Phytoremediation. Adv Biochem Eng Biot 78. Springer-Verlag Berlin

    Google Scholar 

  • Vázquez MD, Barceló J, Poschenreider C, Mádico J, Hatton P, Baker AJM, Cope GH (1992) Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J Plant Physiol 140:350–55

    Google Scholar 

  • Vázquez MD, Poschenreider C, Barceló J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Presl. Bot Acta 107:243–50

    Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–12

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–22

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–33

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikuš K, Regvar M (2006) Arbuscular mycorrhiza as a tolerance strategy in metal contaminated soils-prospects in phytoremediation. Nova Science Publishers, pp. 37–56

    Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Regvar M (2006) Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake. Environ Poll 139:362–71

    Article  CAS  Google Scholar 

  • Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M, Simčči J, Pelicon J, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Poll 147:50–9

    Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–81

    Article  PubMed  CAS  Google Scholar 

  • Welch RM, Norwell WA, Schafer SC, Shaff Je, Kochian LV (1993) Introduction of iron (III) and copper (II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: does the root-cell plasmalema Fe (III)-chelate reductase perform a general role in regulating cation uptake? Planta 190:555–61

    Article  CAS  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Eviron Sci Technol 15:3144–50

    Google Scholar 

  • Williams LE, Mills RF (2005) P(1B)-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Woeste KE, Kieber JJ (2000) A strong loss-of-function mutation in RAN1 results in constitutive activation of the ethylene response pathway as well as a rosette-lethal phenotype. Plant Cell 12:443–55

    Article  PubMed  CAS  Google Scholar 

  • Wójcik M, Vangronsveld J, Haen JD, Tukiendorf A (2005) Cadmium tolerance in Thlaspi caerulescens II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–71

    Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–53

    Article  PubMed  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JA, Hooykaas PJ (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–55

    Article  PubMed  Google Scholar 

  • Zhao FJ, Hamon RE, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151:613–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regvar, M., Vogel-Mikuš, K. (2008). Recent Advances in Understanding of Plant Responses to Excess Metals: Exposure, Accumulation, and Tolerance. In: Khan, N.A., Singh, S., Umar, S. (eds) Sulfur Assimilation and Abiotic Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76326-0_11

Download citation

Publish with us

Policies and ethics