Skip to main content

Water Soluble Poly(fluorene) Homopolymers and Copolymers for Chemical and Biological Sensors

  • Chapter

Part of the book series: Materials Science ((SSMATERIALS,volume 107))

Water soluble poly(fluorene) derivatives can serve as light harvesting materials that increase the signals of FRET-based homogenous and heterogeneous fluorescent assays. The molecular structure of the backbone is important to minimize losses due to photoinduced charge transfer. Signal generation involves coordination of electrostatic forces with efficient FRET. Targets that can be detected using these approaches include DNA, RNA, peptides, proteins, glucose, and small molecules.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Heeger, Angew. Chem. Int. Ed. 40, 2591 (2001)

    Article  Google Scholar 

  2. A.R. Brown, A. Pomp, C.M. Hart, D.M. de Leeuw, Science 270, 972 (1995)

    Article  ADS  Google Scholar 

  3. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  4. J.E. Guillet, Polymer Photophysics and Photochemistry (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  5. S.E. Weber, Chem. Rev. 90, 1469 (1990)

    Article  Google Scholar 

  6. H.F. Kauffmann, Photochemistry and Photophysics, vol. 2, ed. by J.E. Radek (CRC, Boca Raton, 1990)

    Google Scholar 

  7. G.D. Scholes, K.P. Ghiggino, J. Chem. Phys. 101, 1251 (1994)

    Article  ADS  Google Scholar 

  8. S. Tasch, E.J.W. List, C. Hochfilzer, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Mullen, Phys. Rev. B 56, 4479 (1997)

    Article  ADS  Google Scholar 

  9. T.Q. Nguyen, J.J. Wu, V. Doan, B.J. Schwartz, S.H. Tolbert, Science 288, 652 (2000)

    Article  ADS  Google Scholar 

  10. N.G. Pschirer, K. Byrd, U.H.F. Bunz, Macromolecules 34, 8590 (2001)

    Article  ADS  Google Scholar 

  11. D. Beljonne, G. Pourtois, C. Silva, E. Hennebicq, L.M. Herz, R.H. Friend, G.D. Scholes, S. Setayesh, K. Müllen, J.L. Brédas, Proc. Natl. Acad. Sci. USA 99, 10982 (2002)

    Article  ADS  Google Scholar 

  12. B. Liu, S. Wang, G.C. Bazan, A. Mikhailovsky, J. Am. Chem. Soc. 125, 13306, (2003)

    Article  Google Scholar 

  13. B. Liu, G.C. Bazan, J. Am. Chem. Soc. 126, 1942 (2004)

    Article  Google Scholar 

  14. J. Gierscher, J. Cornil, H.-J Egelhaaf, Adv. Mater. 19, 173–191 (2007).

    Article  Google Scholar 

  15. D.W. Lee, T.M. Swager, Synlett. 149 (2004)

    Google Scholar 

  16. Y.H. Korri, F. Garnier, P. Srivastava, P. Godillot, A. Yassar, J. Am. Chem. Soc. 119, 7388 (1997)

    Article  Google Scholar 

  17. P. Bäuerle, A. Emge, Adv. Mater. 10, 324 (1998)

    Article  Google Scholar 

  18. F. Garnier, Y.H. Korri, P. Srivastava, B. Mandrand, T. Delair, Synth. Met. 100, 89 (1999)

    Article  Google Scholar 

  19. Y.H. Korri, A. Yassar, Biomacromolecules 2, 58 (2001)

    Article  Google Scholar 

  20. Q. Zhou, T.M. Swager, J. Am. Chem. Soc. 117, 12593 (1995)

    Article  Google Scholar 

  21. T.M. Swager, Acc. Chem. Res. 31, 201 (1998)

    Article  Google Scholar 

  22. J.S. Yang, T.M. Swager, J. Am. Chem. Soc. 120, 11864 (1998)

    Article  Google Scholar 

  23. J.S. Yang, T.M. Swager, J. Am. Chem. Soc. 120, 5321 (1998)

    Article  Google Scholar 

  24. M. Leclerc, Adv. Mater. 11, 1491 (1999)

    Article  Google Scholar 

  25. D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537 (2000)

    Article  Google Scholar 

  26. P.C. Ewbank, G. Nuding, H. Suenaga, R.D. McCullough, S. Shinkai, Tetrahedron Lett. 42, 155 (2001)

    Article  Google Scholar 

  27. H.A. Ho, M. Boissinot, M.G. Bergeron, G. Corbeil, K. Doré, D. Boudreau, M. Leclerc, Angew. Chem. Int. Ed. 41, 1548 (2002)

    Article  Google Scholar 

  28. I.B. Kim, B. Erdogan, J.N. Wilson, U.H.F. Bunz, Eur. J. Chem. 10, 6247 (2004)

    Article  Google Scholar 

  29. A. Rose, Z.G. Zhu, C.F. Madigan, T.M. Swager, V. Bulovic, Nature 434, 876 (2005)

    Article  ADS  Google Scholar 

  30. I.B. Kim, A. Dunkhorst, J. Gilbert, U.H.F. Bunz, Macromolecules 38, 4560 (2005)

    Article  ADS  Google Scholar 

  31. I.B. Kim, J.N. Wilson, U.H.F. Bunz, Chem. Commun. 1273 (2005)

    Google Scholar 

  32. C. Fan, S. Wang, J.W. Hong, G.C. Bazan, K.W. Plaxco, A.J. Heeger, Proc. Natl. Acad. Sci. USA 100, 6297 (2003)

    Article  ADS  Google Scholar 

  33. N. DiCesare, M.R. Pinto, K.S. Schanze, J.R. Lakowicz, Langmuir 18, 7785 (2002)

    Article  Google Scholar 

  34. B. Liu, G.C. Bazan, Chem. Mater. 16, 4467 (2004)

    Article  Google Scholar 

  35. M. Leclerc, H.A. Ho, Synlett. 2, 380 (2004)

    Article  Google Scholar 

  36. F. Le Floch, H.A. Ho, L.P. Harding, M. Bedard, P.R. Neagu, M. Leclerc, Adv. Mater. 17, 1251 (2005)

    Article  Google Scholar 

  37. H.A. Ho, M. Bers-Aberem, M. Leclerc, Eur. J. Chem. 11, 1718 (2005)

    Article  Google Scholar 

  38. K.P.R. Nilsson, O. Inganäs, Nat. Mater. 2, 419 (2003)

    Article  ADS  Google Scholar 

  39. K.P.R. Nilsson, J.D.M. Olsson, F. Stabo-Eeg, M. Lindgren, P. Konradsson, O. Inganäs, Macromolecules 38, 6813 (2005)

    Article  ADS  Google Scholar 

  40. A. Herland, K.P.R. Nilsson, J.D.M. Olsson, P. Hammarstrom, P. Konradsson, O. Inganäs, J. Am. Chem. Soc. 127, 2317 (2005)

    Article  Google Scholar 

  41. M.R. Pinto, K.S. Schanze, Synthesis 1293 (2002)

    Google Scholar 

  42. D.T. McQuade, A.E. Pullen, T.M. Swager, Chem. Rev. 100, 2537 (2000)

    Article  Google Scholar 

  43. U. Scherf, E.J.W. List, Adv. Mater. 14, 477 (2002)

    Article  Google Scholar 

  44. M. Fukuda, K. Sawada, K. Yoshino, J. Polym. Sci. A: Polym. Chem. 31, 2465 (1993)

    Article  ADS  Google Scholar 

  45. M. Fukuda, K. Sawada, K. Yoshino, Jpn. J. Appl. Phys. 28, L1433 (1989)

    Article  ADS  Google Scholar 

  46. A.D. Schlüter, in Handbook of Conducting Polymers, ed. by T.A. Skotheim, R.L. Elsenbaumer, J.R. Reynolds (Marcel Dekker, New York, 1998), p. 209

    Google Scholar 

  47. B. Liu, G.C. Bazan, in Organic Electroluminescence, ed. by Z.H. Kafafi, (Marcel Dekker, New York, 2005) Chapter 5

    Google Scholar 

  48. M. Stork, B.S. Gaylord, A.J. Heeger, G.C. Bazan, Adv. Mater. 14, 361 (2002)

    Article  Google Scholar 

  49. S. Wang, G.C. Bazan, Adv. Mater. 15, 1425 (2003)

    Article  Google Scholar 

  50. B. Liu, W.-L. Yu, Y.-H. Lai, W. Huang, Macromolecules 35, 4975 (2002)

    Article  ADS  Google Scholar 

  51. H.D. Burrows, V.M.M. Lobo, J. Pina, M.L. Ramos, J.S. de Melo, A.J.M. Valente, M.J. Tapia, S. Pradhan, U. Scherf, Macromolecules 37, 7425 (2004)

    Article  ADS  Google Scholar 

  52. S. Wang, B. Liu, B.S. Gaylord, G.C. Bazan, Adv. Funct. Mater. 13, 463 (2003)

    Article  MATH  Google Scholar 

  53. L. Arnt, G.N. Tew, J. Am. Chem. Soc. 124, 7664 (2002)

    Article  Google Scholar 

  54. M. Bockstaller, W. Ko¨hler, G. Wegner, D. Vlassopoulos, G. Fytas, Macromolecules 34, 6359 (2001)

    Article  ADS  Google Scholar 

  55. F. Wang, G.C. Bazan, J. Am. Chem. Soc. 128, 15786 (2006)

    Article  Google Scholar 

  56. R. Yang, A. Garcia, D. Korystov, A. Mikhailovsky, G.C. Bazan, T.-Q. Nguyen, J. Am. Chem. Soc. 128, 16532 (2006)

    Article  Google Scholar 

  57. B.S. Gaylord, S. Wang, A.J. Heeger, G.C. Bazan, J. Am. Chem. Soc. 123, 6417 (2001)

    Article  Google Scholar 

  58. S. Wang, G.C. Bazan, Chem. Commun. 2508 (2004)

    Google Scholar 

  59. J.R. Lakowicz (ed.), in Principles of Fluorescence Spectroscopy (Kluwer Academic, New York, 1999)

    Google Scholar 

  60. T. Förster, Ann. Phys. 2, 55 (1948)

    Article  MATH  Google Scholar 

  61. J. Cornil, V. Lemaur, M.C. Steel, H. Dupin, A. Burquel, D. Beljonne, J.L. Bredas, in Organic Photovoltaics, ed. by S.J. Sun, N.S. Sariciftci (Taylor and Francis, Boca Raton, 2005), p. 161

    Google Scholar 

  62. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474 (1992)

    Article  ADS  Google Scholar 

  63. R.A. Marcus, Angew. Chem. Int. Eng. 2, 1111 (1993)

    Article  Google Scholar 

  64. Q.H. Xu, D. Moses, A.J. Heeger, Phys. Rev. B 67, 245417 (2003)

    Article  ADS  Google Scholar 

  65. J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104, 4971 (2004)

    Article  Google Scholar 

  66. K.R.J. Thomas, A.L. Thompson, A.V. Sivakumar, A.J. Bardeen, S. Thayumanavan, J. Am. Chem. Soc. 127, 373 (2005)

    Article  Google Scholar 

  67. A.C. Morteani, P. Sreearunothai, L.M. Herz, R.H. Friend, C. Silva, Phys. Rev. Lett. 92, 247402 (2004)

    Article  ADS  Google Scholar 

  68. B. Liu, G.C. Bazan, J. Am. Chem. Soc. 128, 1188 (2006)

    Article  Google Scholar 

  69. J.W. Hong, W.L. Hemme, G.E. Keller, M.T. Rinke, G.C. Bazan, Adv. Mater. 18, 878 (2006)

    Article  Google Scholar 

  70. N.J. Turro, Modern Molecular Photochemistry, (University Science Books, 1997)

    Google Scholar 

  71. S. Tyagi, F.R. Kramer, Nat. Biotechnol. 14, 303 (1996)

    Article  Google Scholar 

  72. M.K. Johansson, H. Fidder, D. Dick, R.M. Cook, J. Am. Chem. Soc. 124, 6950 (2002)

    Article  Google Scholar 

  73. PCT quenching has been observed with fluorescein “locked” within a protein environment by electron transfer from either a tryptophan or tyrosine residue, see M. Götz, S. Hess, G. Beste, A. Skerra, M.E. Michel-Beyerle, Biochemistry 41, 4156 (2002)

    Google Scholar 

  74. B.S. Gaylord, A.J. Heeger, G.C. Bazan, Proc. Natl. Acid. Sci. USA 99, 10954 (2002)

    Article  ADS  Google Scholar 

  75. B.S. Gaylord, M.R. Massie, S.C. Feinstein, G.C. Bazan, Proc. Natl. Acad. Sci. USA 102, 34 (2005)

    Article  ADS  Google Scholar 

  76. B.S. Gaylord, A.J. Heeger, G.C. Bazan, J. Am. Chem. Soc. 125, 896 (2003)

    Article  Google Scholar 

  77. J.W. Hong, W.L. Hemme, G.E. Keller, M.T. Rinke, G.C. Bazan, Adv. Mater. 18, 878 (2006)

    Article  Google Scholar 

  78. B. Liu, G.C. Bazan, J. Am. Chem. Soc. 126, 1942 (2004)

    Article  Google Scholar 

  79. J.T. Davis, Angew. Chem. Int. Ed. 43, 668 (2004)

    Article  Google Scholar 

  80. D.E. Gilbert, J. Feigon, Curr. Opin. Struct. Biol. 9, 305 (1999)

    Article  Google Scholar 

  81. F. He, Y. Tang, S. Wang, Y. Li, D. Zhu, J. Am. Chem. Soc. 127, 12343 (2005)

    Article  Google Scholar 

  82. A.T. Phan, J.L. Mergny, Nucleic. Acids. Res. 30, 4618 (2002)

    Article  Google Scholar 

  83. F. He, Y. Tang, M. Yu, F. Feng, L. An, H. Sun, S. Wang, Y. Li, D. Zhu, G.C. Bazan, J. Am. Chem. Soc. 128, 6764 (2006)

    Article  Google Scholar 

  84. B. Liu, S. Baudrey, L. Jaeger, G.C. Bazan, J. Am. Chem. Soc. 126, 4076 (2004)

    Article  Google Scholar 

  85. L. An, Y. Tang, S. Wang, Y. Li, D. Zhu, Macromol. Rapid. Commun. 27, 993 (2006)

    Article  Google Scholar 

  86. G. Kada, K. Kaiser, H. Falk, H.J. Gruber, Biochim. Biophys. Acta 1427, 44 (1999)

    Google Scholar 

  87. D.B. Papkovsky, T.C. O’Riordan, G.G. Guilbault, Anal. Chem. 71, 1568 (1999)

    Article  Google Scholar 

  88. M. Wu, Z. Lin, M. Schäferling, A. Dürkop, O.S. Wolfbeis, Anal. Biochem. 340, 66 (2005)

    Article  Google Scholar 

  89. F. He, Y. Tang, M. Yu, S. Wang, Y. Li, D. Zhu, Adv. Funct. Mater. 16, 91 (2006)

    Article  Google Scholar 

  90. Y. Tang, F. He, M. Yu, S. Wang, Y. Li, D. Zhu, Chem. Mater. 18, 3605 (2006)

    Article  Google Scholar 

  91. R.F. Service, Science 282, 396 (1998)

    Article  Google Scholar 

  92. D.D. Schemaker, Nature 409, 922 (2001)

    Article  ADS  Google Scholar 

  93. E.M. Southern, Trends Genet. 12, 110 (1996)

    Article  Google Scholar 

  94. G. Ramsay, Nat. Biotechnol. 16, 40 (1998)

    Article  Google Scholar 

  95. C.B. Epstein, R.A. Butow, Curr. Opin. Biotechnol. 11, 36 (2000)

    Article  Google Scholar 

  96. B. Liu, G.C. Bazan, Nature Protocols 1, 1698 (2006)

    Article  Google Scholar 

  97. B. Liu, G.C. Bazan, Proc. Nat. Acad. Sci. 102, 589 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bazan, G.C., Wang, S. (2008). Water Soluble Poly(fluorene) Homopolymers and Copolymers for Chemical and Biological Sensors. In: Bernards, D.A., Malliaras, G.G., Owens, R.M. (eds) Organic Semiconductors in Sensor Applications. Materials Science, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76314-7_1

Download citation

Publish with us

Policies and ethics