Skip to main content

Pattern Recognition of Single-Molecule Force Spectroscopy Data

  • Conference paper
  • 1318 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4802))

Abstract

Motivation: Misfolding of membrane proteins plays an important role in many human diseases such as retinitis pigmentosa, hereditary deafness, and diabetes insipidus. Little is known about membrane proteins as there are only a very few high-resolution structures. Single-molecule force spectroscopy is a novel technique which measures the force necessary to pull a protein out of a membrane. Such force curves contain valuable information about the protein’s structure, conformation, and inter- and intra-molecular forces. High-throughput force spectroscopy experiments generate hundreds of force curves including spurious and good curves, which correspond to different unfolding pathways and to different functional states of an investigated membrane protein.

Results: In the present work we propose a novel application of automated unfolding pattern recognition routines. We apply our method to datasets from unfolding experiments of bacteriorhodopsin (bR) and bovine rhodopsin (Rho). As a result, we discuss the different unfolding pathways of bR, and two functional states for Rho could be observed . Overall, the algorithm tackles the force spectroscopy bottleneck and leads to more consistent and reproducible results paving the way for high-throughput analysis of structural features of membrane proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowie, J.U.: Solving the membrane protein folding problem. Nature 438(7068), 581–589 (2003)

    Article  Google Scholar 

  2. Sanders, C.R., Myers, J.K.: Disease-related misassembly of membrane proteins. Annu. Rev. Biophys. Biomol. Struct. 33, 25–51 (2004)

    Article  Google Scholar 

  3. Mirzadegan, T., Benko, G., Filipek, S., Palczewski, K.: Sequence analyses of G-protein coupled receptors: similarities to rhodopsin. Biochemistry 42(10), 2759–2767 (2003)

    Article  Google Scholar 

  4. Onuchic, J.N., Wolynes, P.G.: Theory of protein folding. Current Opinion in Structural Biology 14, 70–75 (2004)

    Article  Google Scholar 

  5. Müller, D.J., Engel, A.: Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351 (1999)

    Article  Google Scholar 

  6. Müller, D.J., Sass, H.J., Muller, S.A., Buldt, G., Engel, A.: Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 285, 1903–1909 (1999)

    Article  Google Scholar 

  7. Seelert, H., Dencher, N.A., Muller, D.J.: Fourteen protomers compose the oligomer III of the proton-rotor in spinach chloroplast ATP synthase. J. Mol. Biol. 333, 337–344 (2003)

    Article  Google Scholar 

  8. Park, P.S., Sapra, K.T., Kolinski, M., Filipek, S., Palczewski, K., Muller, D.J.: Stabilizing effect of Zn2+ in native bovine rhodopsin. J. Biol. Chem. (2007)

    Google Scholar 

  9. Rief, M., Gautel, M., Schemmel, A., Gaub, H.E.: The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75, 3008–3014 (1998)

    Google Scholar 

  10. Janshoff, A., Neitzert, M., Oberdorfer, Y., Fuchs, H.: Force spectroscopy of molecular systems-single molecule spectroscopy of polymers and biomolecules. Angew Chem. Int. Ed. Engl. 39(18), 3212–3237 (2000)

    Article  Google Scholar 

  11. Janovjak, H., Struckmeier, J., Hubain, M., Kedrov, A., Kessler, M., Muller, D.J.: Probing the energy landscape of the membrane protein bR. Structure 12(5), 871–879 (2004)

    Article  Google Scholar 

  12. Oesterhelt, F., Oesterhelt, D., Pfeiffer, M., Engel, A., Gaub, H., Muller, D.J.: Unfolding pathways of individual bacteriorhodopsins. Science 288(5463), 143–146 (2000)

    Article  Google Scholar 

  13. Sapra, K.T., Besir, H., Oesterhelt, D., Muller, D.J.: Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy. J. Mol. Biol. 355(4), 640–650 (2006)

    Article  Google Scholar 

  14. Muller, D.J., Kessler, M., Oesterhelt, F., Moller, C., Oesterhelt, D., Gaub, H.: Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy. Biophys. J. 83(6), 3578–3588 (2002)

    Article  Google Scholar 

  15. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M., Gaub, H.E.: Reversible unfolding of individual titin immunoglobulin domains by afm. Science 276(5315), 1109–1112 (1997)

    Article  Google Scholar 

  16. Haupts, U., Tittor, J., Oesterhelt, D.: Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu. Rev. Biophys. Biomol. Struct. 28, 367–399 (1999)

    Article  Google Scholar 

  17. Oesterhelt, D.: The structure and mechanism of the family of retinal proteins from halophilic archaea. Curr. Opin. Struct. Biol. 8, 489–500 (1998)

    Article  Google Scholar 

  18. Belrhali, H., Nollert, P., Royant, A., Menzel, C., Rosenbusch, J.P., Landau, E.M., Pebay-Peyroula, E.: Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9. A resolution. Struct. Fold. Des. 7, 909–917 (1999)

    Article  Google Scholar 

  19. Essen, L-O., Siegert, R., Lehmann, W.D., Oesterhelt, D.: Lipid patches in membrane protein oligomers: Crystal structure of the bacterorhodopsin-lipid complex. Proc. Natl. Acad. Sci. 95, 11673–11678 (1998)

    Article  Google Scholar 

  20. Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M., Henderson, R.: Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421 (1996)

    Article  Google Scholar 

  21. Luecke, H., Schobert, B., Richter, H.T., Cartailler, J.P., Lanyi, J.K.: Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911 (1999)

    Article  Google Scholar 

  22. Mitsuoka, K., Hirai, T.T., Murata, K., Miyazawa, A., Kidera, A., Kimura, Y., Fujiyoshi, Y.: The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882 (1999)

    Article  Google Scholar 

  23. Baldwin, J.M.: The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703 (1993)

    Google Scholar 

  24. Helmreich, E.J.M., Hofmann, K-P.: Structure and function of proteins in G-protein coupled signal transfer. Biochem. Biophys. Acta. 1286, 285–322 (1996)

    Google Scholar 

  25. Kolbe, M., Besir, H., Essen, L.O., Oesterhelt, D.: Structure of the light-driven chloride pump halorhodopsin at 1.8 Å resolution. Science 288, 1390–1396 (2000)

    Article  Google Scholar 

  26. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M.: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289, 739–745 (2000)

    Article  Google Scholar 

  27. Royant, A., Nollert, P., Edman, K., Neutze, R., Landau, E.M., Pebay-Peyroula, E., Navarro, J.: X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc. Natl. Acad. Sci. 98, 10131–10136 (2001)

    Article  Google Scholar 

  28. Lanyi, J.K.: Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin. FEBS Lett. 464, 103–107 (1999)

    Article  Google Scholar 

  29. Filipek, S., Teller, D.C., Palczewski, K., Stenkamp, R.: The crystallographic model of rhodopsin and its use in studies of other G protein-coupled receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 375–397 (2003)

    Article  Google Scholar 

  30. Filipek, S., Stenkamp, R.E., Teller, D.C., Palczewski, K.: G protein-coupled receptor rhodopsin: a prospectus. Annu. Rev. Physiol. 65, 851–879 (2003)

    Article  Google Scholar 

  31. Ridge, K.D., Abdulaev, N.G., Sousa, M., Palczewski, K.: Phototransduction: crystal clear. Trends Biochem. Sci. 28, 479–487 (2003)

    Article  Google Scholar 

  32. Dryja, T.P., Li, T.: Molecular genetics of retinitis pigmentosa. Hum. Mol. Genet. 4, 1739–1743 (1995)

    Google Scholar 

  33. Liu, X., Garriga, P., Khorana, H.G.: Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa. Proc. Natl Acad. Sci. 93, 4554–4559 (1996)

    Article  Google Scholar 

  34. Rader, A.J., Anderson, G., Isin, B., Khorana, H.G., Bahar, I., Klein-Seetharaman, J.: Identification of core amino acids stabilizing rhodopsin. Proc. Natl Acad. Sci. 101, 7246–7251 (2004)

    Article  Google Scholar 

  35. Hwa, J., Klein-Seetharaman, J., Khorana, H.G.: Structure and function in rhodopsin: mass spectrometric identification of the abnormal intradiscal disulfide bond in misfolded retinitis pigmentosa mutants. Proc. Natl Acad. Sci. 98, 4872–4876 (2001)

    Article  Google Scholar 

  36. Marsico, A., Labudde, D., Sapra, T., Muller, D.J., Schroeder, M.: A novel pattern recognition algorithm to classify membrane protein unfolding pathways with high-throughput single-molecule force spectroscopy. Bioinformatics 23, 231–236 (2007)

    Article  Google Scholar 

  37. Eddy, S.R.: What is dynamic programming? Nature Biotechnology 22, 909–910 (2004)

    Article  Google Scholar 

  38. Tanuj Sapra, K., Park, P.S., Filipek, S., Engel, A., Muller, D.J., Palczewski, K.: Detecting molecular interactions that stabilize native bovine rhodopsin. J. Mol. Biol. 358, 255–269 (2006)

    Article  Google Scholar 

  39. Janovjak, H., Kedrov, A., Cisneros, D.A., Sapra, K.T., Müller, D.J.: Imaging and detecting molecular interactions of single transmembrane proteins. Neurobiol of Aging 27, 546–561 (2006)

    Article  Google Scholar 

  40. Muller, D.J., Sapra, K.T., Scheuring, S., Kedrov, A., Frederix, P.L., Fotiadis, D., Engel, A.: Single-molecule studies of membrane proteins. Curr. Opin. Struct. Biol. 16, 489–495 (2006)

    Article  Google Scholar 

  41. Kasas, S., Rieder, B.M., Catsicas, S., Cappella, B., Dietler, G.: Fuzzy logic algorithm to extract specific interaction forces from atomic force microscopy data. Review of Scientific Instruments 71(5), 2082–2086 (2000)

    Article  Google Scholar 

  42. Kuhn, M., Janovjak, H., Hubain, M., Muller, D.J.: Automated alignment and pattern recognition of single-molecule force spectroscopy data. J. Microsc. 218, 125–132 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jean-Luc Hainaut Elke A. Rundensteiner Markus Kirchberg Michela Bertolotto Mathias Brochhausen Yi-Ping Phoebe Chen Samira Si-Saïd Cherfi Martin Doerr Hyoil Han Sven Hartmann Jeffrey Parsons Geert Poels Colette Rolland Juan Trujillo Eric Yu Esteban Zimányie

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Labudde, D., Marsico, A., Sapra, K.T., Schroeder, M. (2007). Pattern Recognition of Single-Molecule Force Spectroscopy Data. In: Hainaut, JL., et al. Advances in Conceptual Modeling – Foundations and Applications. ER 2007. Lecture Notes in Computer Science, vol 4802. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76292-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76292-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76291-1

  • Online ISBN: 978-3-540-76292-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics