Redox Transformations and Transport Processes

Part of the Monographs in Electrochemistry book series (MOEC)


According to the classical theory of simple electron-transfer reactions, the reactants get very close to the electrode surface, and then electrons can tunnel over the short distance (tenths of a nanometer) between the metal and the activated species in the solution phase. In the case of polymer-modified electrodes, the active parts of the polymer cannot approach the metal surface because the polymer chains are trapped in a tangled network, and chain diffusion is usually much slower than the time-scale of the transient electrochemical experiment. Therefore, the transport of electrons can be assumed to occur either via an electron exchange reaction (electron hopping) between neighboring redox sites if the segmental motions make it possible, or via the movement of delocalized electrons through conjugated systems (electronic conduction). The former mechanism is characteristic of redox polymers. In the case of electronically conducting polymers, electrochemical transformation—usually oxidation—of the nonconducting form of these polymers usually leads to a reorganization of the bonds of the macromolecule and the development of an extensively conjugated system. An electron-hopping mechanism is likely to be operative between the chains (interchain conduction) and defects, even in the case of conducting polymers. However, it is important to pay attention to more than just the "electronic charging" of the polymer film (i.e., to electron exchange at the metal│polymer interface and electron transport through the surface layer), since ions will cross the film│solution interface in order to preserve electroneutrality within the film. The movement of counterions (or less frequently that of co-ions) may also be the rate-determining step. A small imbalance in the charge in the electrochemical double layers can only exist at the interfacial regions.

Keywords: Electron transport - Electron exchange reaction - Dahms–Ruff theory - Advanced theories predicting the nonlinear D(c) function - Percolation and diffusion behaviors - Electronic conductivity - Delocalized band model - Mott model - Fluctuation-induced tunneling - Ion transport - Coupling of electron and ionic charge transport - Solvent transport - Dynamics of polymeric motion - Effect of film structure and morphology - Relaxation and hysteresis phenomena - Electrochemically stimulated conformational relaxation


Electron Spin Resonance Charge Transport Redox Center Hysteresis Phenomenon Redox Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403Google Scholar
  2. 2.
    Inzelt G (1994) Mechanism of charge transport in polymer-modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 18. Marcel Dekker, New York, p 89Google Scholar
  3. 3.
    Lyons MEG (ed) (1994) Electroactive polymer electrochemistry, part I. Plenum, New YorkGoogle Scholar
  4. 4.
    Lyons MEG (ed) (1996) Electroactive polymer electrochemistry, part II. Plenum, New YorkGoogle Scholar
  5. 5.
    Malev VV, Kontratiev VV (2006) Russ Chem Rev 75:147Google Scholar
  6. 6.
    Murray RW (1984) Chemically modified electrodes. In: Bard AJ (ed) Electroanalytical chemistry, vol 13. Marcel Dekker, New York, p 191Google Scholar
  7. 7.
    Murray RW (ed) (1992) Molecular design of electrode surfaces. In: Weissberger A, Saunders H Jr (eds) Techniques of chemistry, vol 22. Wiley, New YorkGoogle Scholar
  8. 8.
    Vorotyntsev MA, Levi MD (1991) Elektronno–provodyashchiye polimeri. In: Polukarov YuM (ed) Itogi nauki i tekhniki, vol 34. Viniti, MoscowGoogle Scholar
  9. 9.
    Dahms H (1968) J Phys Chem 72:362Google Scholar
  10. 10.
    Ruff I, Friedrich VJ (1971) J Phys Chem 75:3297Google Scholar
  11. 11.
    Ruff I, Friedrich VJ, Demeter K, Csillag K (1971) J Phys Chem 75:3303Google Scholar
  12. 12.
    Botár L, Ruff I (1986) Chem Phys Lett 126:348Google Scholar
  13. 13.
    Buck RP (1988) J Phys Chem 92:4196Google Scholar
  14. 14.
    Buck RP (1987) J Electroanal Chem 219:23Google Scholar
  15. 15.
    Buck RP (1988) J Phys Chem 92:6445Google Scholar
  16. 16.
    Buck RP (1989) J Electroanal Chem 258:1Google Scholar
  17. 17.
    Rubinstein I (1985) J Electroanal Chem 188:227Google Scholar
  18. 18.
    Albery WJ, Hillman AR (1981) Ann Rev C R Soc Chem London 377Google Scholar
  19. 19.
    Inzelt G (1989) Electrochim Acta 34:83Google Scholar
  20. 20.
    Inzelt G, Chambers JQ, Bácskai J, Day RW (1986) J Electroanal Chem 201:301Google Scholar
  21. 21.
    Schroeder AH, Kaufman FB (1980) J Electroanal Chem 113:209Google Scholar
  22. 22.
    Hillman AR, Loveday DC, Swann MJ, Eales RM, Hamnett A, Higgins SJ, Bruckenstein S, Wilde CP (1989) Faraday Disc Chem Soc 88:151Google Scholar
  23. 23.
    Inzelt G, Szabó L (1986) Electrochim Acta 31:1381Google Scholar
  24. 24.
    Dalton EF, Murray RW (1991) J Phys Chem 95:6383Google Scholar
  25. 25.
    Buttry DA, Anson FC (1981) J Electroanal Chem 130:333Google Scholar
  26. 26.
    Feldberg SW (1986) J Electroanal Chem 198:1Google Scholar
  27. 27.
    Láng G, Inzelt G (1991) Electrochim Acta 36:847Google Scholar
  28. 28.
    Gabrielli C, Takenouti H, Haas O, Tsukada A (1991) J Electroanal Chem 302:59Google Scholar
  29. 29.
    Oyama N, Yamaguchi S, Nishiki Y, Tokuda K, Anson FC (1982) J Electroanal Chem 139:371Google Scholar
  30. 30.
    Rubinstein I, Risphon J, Gottesfeld S (1986) J Electrochem Soc 133:729Google Scholar
  31. 31.
    Penner R, Martin CR (1989) J Phys Chem 93:984Google Scholar
  32. 32.
    Hunter TB, Tyler PS, Smyrl WH, White HS (1987) J Electrochem Soc 134:2198Google Scholar
  33. 33.
    Nakahama S, Murray RW (1983) J Electroanal Chem 158:303Google Scholar
  34. 34.
    Paulse CD, Pickup PG (1988) J Phys Chem 92:7002Google Scholar
  35. 35.
    He P, Chen X (1988) J Electroanal Chem 256:353Google Scholar
  36. 36.
    Fritsch-Faules I, Faulkner LR (1989) J Electroanal Chem 263:237Google Scholar
  37. 37.
    Blauch DN, Savéant JM (1992) J Am Chem Soc 114:3323Google Scholar
  38. 38.
    Leiva E, Meyer P, Schmickler W (1988) J Electrochem Soc 135:1993Google Scholar
  39. 39.
    Chidsey CED, Murray RW (1986) J Phys Chem 90:1479Google Scholar
  40. 40.
    Andrieux CP, Saveant JM (1980) J Electroanal Chem 111:377Google Scholar
  41. 41.
    Andrieux CP, Saveant JM (1988) J Phys Chem 92:6761Google Scholar
  42. 42.
    Saveant JM (1988) J Electroanal Chem 242:1Google Scholar
  43. 43.
    Saveant JM (1988) J Phys Chem 92:4526Google Scholar
  44. 44.
    Baldy CJ, Elliot CM, Feldberg SW (1990) J Electroanal Chem 283:53Google Scholar
  45. 45.
    Laviron E (1980) J Electroanal Chem 112:1Google Scholar
  46. 46.
    Srinivasa Mohan L, Sangaranarayanan MV (1992) J Electroanal Chem 323:375Google Scholar
  47. 47.
    MacDiarmid AG (2001) Angew Chem Int Ed 40:2581Google Scholar
  48. 48.
    Heeger AJ (2001) Angew Chem Int Ed 40:2591Google Scholar
  49. 49.
    Diaz AF, Rubinson JF, Mark HB Jr (1988) Electrochemistry and electrode applications of electroactive/conducting polymers. In: Henrici-Olivé G, Olivé S (eds) Advances in polymer science, vol 84. Springer, Berlin, p 113Google Scholar
  50. 50.
    Evans GP (1990) The electrochemistry of conducting polymers. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 1. VCH, Weinheim, p 1Google Scholar
  51. 51.
    Skotheim TA (ed) (1998) Handbook of conducting polymers. Marcel Dekker, New YorkGoogle Scholar
  52. 52.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139Google Scholar
  53. 53.
    Asturias GE, Jang GW, MacDiarmid AG, Doblhofer K, Zhong C (1991) Ber Bunsenges Phys Chem 95:1381Google Scholar
  54. 54.
    Csahók E, Vieil E, Inzelt G (2000) J Electroanal Chem 482:168Google Scholar
  55. 55.
    Epstein AJ, MacDiarmid AG (1991) Synth Met 41-43:601Google Scholar
  56. 56.
    Focke WW, Wnek GE, Wei Y (1987) J Phys Chem 91:5813Google Scholar
  57. 57.
    Glarum SH, Marshall JH (1987) J Electrochem Soc 134:142Google Scholar
  58. 58.
    Zhang C, Yao B, Huang J, Zhou X (1997) J Electroanal Chem 440:35Google Scholar
  59. 59.
    Romero AJF, Cascales JJL, Otero TF (2005) J Phys Chem B 109:21078Google Scholar
  60. 60.
    Miasik J, Hooper A, Tofield B (1986) J Chem Soc Faraday Trans 82:1117Google Scholar
  61. 61.
    Syritski V, Öpik A, Forsén O (2003) Electrochim Acta 48:1409Google Scholar
  62. 62.
    Naarmann H (1987) Synth Met 17:223Google Scholar
  63. 63.
    Swager TM (1998) Acc Chem Res 31:201Google Scholar
  64. 64.
    Conwell EM (1997) In: Nalwa HS (ed) Handbook of organic conducting molecules and polymers, vol 4. Wiley, New York, p 1Google Scholar
  65. 65.
    Tsukamoto J, Takahashi A, Kawasaki K (1990) Jap J Appl Phys 29:125Google Scholar
  66. 66.
    Csahók E, Vieil E, Inzelt G (1999) Synth Met 101:843Google Scholar
  67. 67.
    Wessling B (1994) Adv Mater 6:226Google Scholar
  68. 68.
    Norris ID, Shaker MM, Ko FK, MacDiarmid AG (2000) Synth Met 114:109Google Scholar
  69. 69.
    Glarum SH, Marshall JH (1987) J Electrochem Soc 134:2160Google Scholar
  70. 70.
    Mazeikiene R, Niaura G, Malinauskas A (2006) Electrochim Acta 51:1917Google Scholar
  71. 71.
    Neudeck A, Petr A, Dunsch L (1999) J Phys Chem B 103:912Google Scholar
  72. 72.
    Petr A, Dunsch L (1996) J Electroanal Chem 419:55Google Scholar
  73. 73.
    Zhou Q, Zhuang L, Lu J (2002) Electrochem Commun 4:733Google Scholar
  74. 74.
    Zhuang L, Zhou Q, Lu J (2000) J Electroanal Chem 493:135Google Scholar
  75. 75.
    Albery WJ, Chen Z, Horrocks BR, Mount AR, Wilson PJ, Bloor D, Monkman AT, Elliot CM (1989) Faraday Disc Chem Soc 88:247Google Scholar
  76. 76.
    Scott J, Pfluger P, Krounbi MT, Street GB (1983) Phys Rev B 28:2140Google Scholar
  77. 77.
    Neudeck A, Marken F, Compton RG (2002) UV/VIS/NIR spectroelectrochemistry. In: Scholz F (ed) Electroanalytical methods. Springer, Berlin, pp 167–189Google Scholar
  78. 78.
    Patil R, Harima Y, Yamashita K, Komaguchi K, Itagaki Y, Shiotani M (2002) J Electroanal Chem 518:13Google Scholar
  79. 79.
    MacDiarmid AG, Epstein AJ (1989) Faraday Disc Chem Soc 88:317Google Scholar
  80. 80.
    Kaufman JH, Kanazawa KK, Street JB (1984) Phys Rev Lett 53:2461Google Scholar
  81. 81.
    Skotheim TA (ed) (1986) Handbook of conducting polymers. Marcel Dekker, New York, vols 1–2Google Scholar
  82. 82.
    Chance RP, Boudreaux DS, Bredas JL, Silbey R (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vols 2. Marcel Dekker, New York, p 825Google Scholar
  83. 83.
    Heeger AJ (1989) Faraday Disc Chem Soc 88:203Google Scholar
  84. 84.
    Bredas JL, Street GB (1985) Acc Chem Res 18:309Google Scholar
  85. 85.
    Paasch G (1992) Synth Met 51:7Google Scholar
  86. 86.
    Paasch G, Nguyen PH, Fischer AJ (1998) Chem Phys 227:219Google Scholar
  87. 87.
    Vorotyntsev MA, Daikhin LI, Levi MD (1992) J Electroanal Chem 332:213Google Scholar
  88. 88.
    Vorotyntsev MA, Rubashkin AA, Badiali JP (1996) Electrochim Acta 41:2313Google Scholar
  89. 89.
    Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Clarendon, OxfordGoogle Scholar
  90. 90.
    Sheng P (1980) Phys Rev B 21:2180Google Scholar
  91. 91.
    Paasch G, Smeisser D, Bartl A, Naarman H, Dunsch L, Göpel W (1994) Synth Met 66:135Google Scholar
  92. 92.
    Paul EW, Ricco AJ, Wrighton MS (1985) J Phys Chem 89:1441Google Scholar
  93. 93.
    Harsányi G (1995) Polymer films in sensor applications. Technomic, Basel, SwitzerlandGoogle Scholar
  94. 94.
    Pei Q, Inganäs O (1993) Synth Met 55–57:3730Google Scholar
  95. 95.
    Lepcsényi I, Reichardt A, Inzelt G, Harsányi G (1999) Highly sensitive and selective polymer based gas sensor. In: Proc 12th European Microelectronics and Packaging Conference, Harrogate, UK, 7–9 June 1999, pp 301–305Google Scholar
  96. 96.
    Inzelt G (2000) Electrochim Acta 45:3865Google Scholar
  97. 97.
    Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism. VCH, Weinheim, pp 124–143Google Scholar
  98. 98.
    Inzelt G, Csahók E, Kertész V (2001) Electrochim Acta 46:3955Google Scholar
  99. 99.
    Meerholz K, Heinze J (1996) Electrochim Acta 41:1839Google Scholar
  100. 100.
    Ping Z, Nauer GE, Neugebauer H, Thiener J, Neckel A (1997) J Chem Soc Faraday Trans 93:121Google Scholar
  101. 101.
    Diaz AF, Logan JA (1980) J Electroanal Chem 111:111Google Scholar
  102. 102.
    Genies EM, Penneau JF, Vieil E (1990) J Electroanal Chem 283:205Google Scholar
  103. 103.
    Horányi G, Inzelt G (1988) Electrochim Acta 33:947Google Scholar
  104. 104.
    Kalaji M, Peter LM (1991) J Chem Soc Faraday Trans 87:853Google Scholar
  105. 105.
    Feldberg SW (1984) J Am Chem Soc 106:4671Google Scholar
  106. 106.
    Rubinstein I, Sabatini E, Rishpon J (1987) J Electrochem Soc 134:3079Google Scholar
  107. 107.
    Diaz AF, Kanazawa KK, Gardini GP (1979) J Chem Soc Chem Commun, p 635Google Scholar
  108. 108.
    Kalaji M, Nyholm L, Peter LM (1991) J Electroanal Chem 313:271Google Scholar
  109. 109.
    Posadas D, Florit MI (2004) J Phys Chem B 108:15470Google Scholar
  110. 110.
    Otero TF, Grande HJ, Rodriguez J (1997) J Phys Chem B 101:3688Google Scholar
  111. 111.
    Feldberg SW, Rubinstein I (1988) J Electroanal Chem 240:1Google Scholar
  112. 112.
    Heinze J, Tschuncky P, Smie A (1998) J Solid State Electrochem 2:102Google Scholar
  113. 113.
    Vorotyntsev MA, Heinze J (2001) Electrochim Acta 46:3309Google Scholar
  114. 114.
    Pickup PG (1999) J Mater Chem 9:1641Google Scholar
  115. 115.
    Doblhofer K (1994) Thin polymer films on electrodes. In: Lipkowski J, Ross PN (eds) Electrochemistry of novel materials. VCH, New York, p 141Google Scholar
  116. 116.
    Doblhofer K (1992) J Electroanal Chem 331:1015Google Scholar
  117. 117.
    Doblhofer K, Vorotyntsev MA (1994) In: Lyons MEG (ed) Electroactive polymer electrochemistry, part 1. Plenum, New York, pp 375–437Google Scholar
  118. 118.
    Hillman AR, Loveday DC, Bruckenstein S (1989) J Electroanal Chem 274:157Google Scholar
  119. 119.
    Inzelt G, Bácskai J (1992) Electrochim Acta 37:647Google Scholar
  120. 120.
    Pruneanu S, Csahók E, Kertész V, Inzelt G (1998) Electrochim Acta 43:2305Google Scholar
  121. 121.
    Inzelt G, Horányi G (1987) J Electroanal Chem 230:257Google Scholar
  122. 122.
    Inzelt G, Kertész V, Nybäck AS (1999) J Solid State Electrochem 3:251Google Scholar
  123. 123.
    Buttry DA (1991) Applications of the quartz crystal microbalance to electrochemistry. In: Bard AJ (ed) Electroanalytical chemistry, vol 17, Marcel Dekker, New York, p 1Google Scholar
  124. 124.
    Inzelt G (1990) J Electroanal Chem 287:171Google Scholar
  125. 125.
    Inzelt G, Day RW, Kinstle JF, Chambers JQ (1983) J Phys Chem 87:4592Google Scholar
  126. 126.
    Inzelt G, Horányi G, Chambers JQ (1987) Electrochim Acta 32:757Google Scholar
  127. 127.
    Inzelt G, Chambers JQ, Kaufman FB (1983) J Electroanal Chem 159:443Google Scholar
  128. 128.
    Barbero C, Miras MC, Haas O, Kötz R (1991) J Electrochem Soc 138:669Google Scholar
  129. 129.
    Daifuku H, Kawagoe T, Yamamoto N, Ohsaka T, Oyama N (1989) J Electroanal Chem 274:313Google Scholar
  130. 130.
    Skompska M, Hillman AR (1997) J Electroanal Chem 433:127Google Scholar
  131. 131.
    Henderson MJ, Hillman AR, Vieil E (1999) J Phys Chem B 103:8899Google Scholar
  132. 132.
    Bácskai J, Martinusz K, Czirók E, Inzelt G, Kulesza PJ, Malik MA (1995) J Electroanal Chem 385:241Google Scholar
  133. 133.
    Karimi M, Chambers JQ (1987) J Electroanal Chem 217:313Google Scholar
  134. 134.
    Láng G, Bácskai J, Inzelt G (1993) Electrochim Acta 38:773Google Scholar
  135. 135.
    Oyama N, Oki N, Ohno H, Ohnuki Y, Matsuda H, Tsuchida E (1983) J Phys Chem 87:3642Google Scholar
  136. 136.
    Clarke AP, Vos JG, Hillman AR, Glidle A (1995) J Electroanal Chem 389:129Google Scholar
  137. 137.
    Chambers JQ, Kaufman FB, Nichols KH (1982) J Electroanal Chem 142:277Google Scholar
  138. 138.
    Baker CK, Qui YJ, Reynolds JR (1991) J Phys Chem 95:4446Google Scholar
  139. 139.
    Fiorito PA, Cordoba de Torresi SI (2005) J Electroanal Chem 581:31Google Scholar
  140. 140.
    Komura T, Mori Y, Yamaguchi T, Takahasi K (1997) Electrochim Acta 42:985Google Scholar
  141. 141.
    Ren X, Pickup PG (1992) J Electrochem Soc 139:2097Google Scholar
  142. 142.
    Orata D, Buttry DA (1987) J Am Chem Soc 109:3574Google Scholar
  143. 143.
    Barbero CA (2005) Phys Chem Chem Phys 7:1885Google Scholar
  144. 144.
    Barbero C, Miras MC, Kötz R, Haas O (1993) Solid State Ionics 60:167Google Scholar
  145. 145.
    Daikhin LI, Levi MD (1992) J Chem Soc Faraday Trans 88:1023Google Scholar
  146. 146.
    Amman E, Beuret C, Indermühle PF, Kötz R, de Rooij NF, Siegenthaler H (2001) Electrochim Acta 47:327Google Scholar
  147. 147.
    Troise Frank MH, Denuault G (1993) J Electroanal Chem 354:331Google Scholar
  148. 148.
    Bandey HL, Gonsalves M, Hillman AR, Glidle A, Bruckenstein S (1996) J Electroanal Chem 410:219Google Scholar
  149. 149.
    Barbero C, Calvo EJ, Etchenique R, Morales GM, Otero M (2000) Electrochim Acta 45:3895Google Scholar
  150. 150.
    Choi SJ, Park SM (2002) J Electrochem Soc 149:E26Google Scholar
  151. 151.
    Gabrielli C, Keddam M, Nadi N, Perrot H (2000) J Electroanal Chem 485:101Google Scholar
  152. 152.
    Varela H, Torresi RM (2000) J Electrochem Soc 147:665Google Scholar
  153. 153.
    Fehér K, Inzelt G (2002) Electrochim Acta 47:3551Google Scholar
  154. 154.
    Abrantes LM, Cordas CM, Vieil E (2002) Electrochim Acta 47:1481Google Scholar
  155. 155.
    Ansari Khalkhali R, Prize WE, Wallace GG (2003) React Funct Polym 56:141Google Scholar
  156. 156.
    Bruckenstein S, Brzezinska K, Hillman AR (2000) Phys Chem Chem Phys 2:1221Google Scholar
  157. 157.
    Gabrielli C, Garcia-Jareno JJ, Perrot H (2001) Electrochim Acta 46:4095Google Scholar
  158. 158.
    Weidlich CW, Mangold KM, Jüttner K (2005) Electrochim Acta 50:1547Google Scholar
  159. 159.
    Dang XD, Intelman CM, Rammelt U, Plieth W (2005) J Solid State Electrochem 9:706Google Scholar
  160. 160.
    Benito D, Gabrielli C, Garcia-Jareno JJ, Keddam M, Perrot H, Vicente F (2003) Electrochim Acta 48:4039Google Scholar
  161. 161.
    Chen SM, Fa YH (2004) J Electroanal Chem 567:9Google Scholar
  162. 162.
    Cintra EP, Torresi RM, Louarn G, Cordoba de Torresi SI (2004) Electrochim Acta 49:1409Google Scholar
  163. 163.
    White HS, Leddy J, Bard AJ (1982) J Am Chem Soc 104:4811Google Scholar
  164. 164.
    Vieil E, Meerholz K, Matencio T, Heinze J (1994) J Electroanal Chem 368:183Google Scholar
  165. 165.
    Abrantes LM, Correia JP, Savic M, Jin G (2001) Electrochim Acta 46:3181Google Scholar
  166. 166.
    Andrade EM, Molina FV, Posadas D, Florit MI (2005) J Electrochem Soc 152:E75Google Scholar
  167. 167.
    Bauerman LP, Bartlett PN (2005) Electrochim Acta 50:1537Google Scholar
  168. 168.
    Tallman DE, Pae Y, Bierwagen GP (1999) Corrosion 55:779Google Scholar
  169. 169.
    Lizarraga L, Andrade EM, Molina FV (2004) J Electroanal Chem 561:127Google Scholar
  170. 170.
    Nekrasov AA, Ivanov VF, Gribkova OL, Vannikov AV (2005) Electrochim Acta 50:1605Google Scholar
  171. 171.
    Nekrasov AA, Ivanov VF, Vannikov AV (2001) Electrochim Acta 46:3301Google Scholar
  172. 172.
    Otero TF, Rodríguez J (1994) Electrochim Acta 39:245Google Scholar
  173. 173.
    Puskás Z, Inzelt G (2005) Electrochim Acta 50:1481Google Scholar
  174. 174.
    Gabrielli C, Haas O, Takenouti H (1987) J Appl Electrochem 17:82Google Scholar
  175. 175.
    Armstrong RD (1986) J Electroanal Chem 198:177Google Scholar
  176. 176.
    Anson FC, Blauch DN, Saveant JM, Shu CF (1991) J Am Chem Soc 113:1922Google Scholar
  177. 177.
    Láng G, Inzelt G (1999) Electrochim Acta 44:2037Google Scholar
  178. 178.
    Láng GG, Ujvári M, Inzelt G (2004) J Electroanal Chem 572:283Google Scholar
  179. 179.
    Tu X, Xie Q, Xiang C, Zhang Y, Yao S (2005) J Phys Chem B 109:4053Google Scholar
  180. 180.
    Ujvári M, Láng G, Inzelt G (2000) Electrochem Commun 2:497Google Scholar
  181. 181.
    Gao Z, Bobacka J, Ivaska A (1994) J Electroanal Chem 364:127Google Scholar
  182. 182.
    Garcia-Belmonte G, Bisquert J (2002) Electrochim Acta 47:4263Google Scholar
  183. 183.
    Levi MD, Aurbach D (2002) J Electrochem Soc 149:E215Google Scholar
  184. 184.
    Vorotyntsev MA, Vieil E, Heinze J (1998) J Electroanal Chem 450:121Google Scholar
  185. 185.
    Komura T, Ishihara M, Yamaguti T, Takahashi K (2000) J Electroanal Chem 493:84Google Scholar
  186. 186.
    Levin O, Kontratiev V, Malev V (2005) Electrochim Acta 50:1573Google Scholar
  187. 187.
    Ivanova YN, Karyakin AA (2004) Electrochem Commun 6:120Google Scholar
  188. 188.
    Buck RP, Madaras MB, Mäckel R (1993) J Electroanal Chem 362:33Google Scholar
  189. 189.
    Buck RP, Mundt C (1999) Electrochim Acta 44:1999Google Scholar
  190. 190.
    Mathias MF, Haas O (1993) J Phys Chem 97:9217Google Scholar
  191. 191.
    Vorotyntsev MA, Badiali JP, Inzelt G (1999) J Electroanal Chem 472:7Google Scholar
  192. 192.
    Vorotyntsev MA, Daikhin LI, Levi MD (1994) J Electroanal Chem 364:37Google Scholar
  193. 193.
    Vorotyntsev MA, Deslouis C, Musiani MM, Tribollet B, Aoki K (1999) Electrochim Acta 44:2105Google Scholar
  194. 194.
    Zhang J, Zhao F, Abe T, Kaneko M (1999) Electrochim Acta 45:399Google Scholar
  195. 195.
    Bácskai J, Inzelt G (1991) J Electroanal Chem 310:379Google Scholar
  196. 196.
    Hillman AR, Bruckenstein S (1993) J Chem Soc Faraday Trans 89:339Google Scholar
  197. 197.
    Otero TF, Boyano I (2003) J Phys Chem B 107:6700Google Scholar
  198. 198.
    Lieder M, Schläpfer CW (1996) J Electroanal Chem 41:87Google Scholar
  199. 199.
    Mazeikiene R, Malinauskas A (1996) ACH Models Chem 133:471Google Scholar
  200. 200.
    Biaggio SR, Oliveira CLF, Aguirre MJ, Zagal JG (1994) J Appl Electrochem 24:1059Google Scholar
  201. 201.
    Brett CMA, Oliveira Brett AMCF, Pereira JLC, Rebelo C (1993) J Appl Electrochem 23:332Google Scholar
  202. 202.
    Rossberg K, Dunsch L (1999) Electrochim Acta 44:2061Google Scholar
  203. 203.
    Rourke F, Crayston JA (1993) J Chem Soc Faraday Trans 89:295Google Scholar
  204. 204.
    Yonezawa S, Kanamura K, Takehara Z (1995) J Chem Soc Faraday Trans 91:3469Google Scholar
  205. 205.
    Rossberg K, Paasch G, Dunsch L, Ludwig S (1998) J Electroanal Chem 443:49Google Scholar
  206. 206.
    Albery WJ, Elliot CM, Mount AR (1990) J Electroanal Chem 288:15Google Scholar
  207. 207.
    Ehrenbeck C, Jüttner K, Ludwig S, Paasch G (1998) Electrochim Acta 43:2781Google Scholar
  208. 208.
    Fletcher S (1993) J Chem Soc Faraday Trans 89:311Google Scholar
  209. 209.
    Bonazzola C, Calvo EJ (1998) J Electroanal Chem 449:111Google Scholar
  210. 210.
    Johnson BW, Read DC, Christensen P, Hamnett A, Armstrong RD (1994) J Electroanal Chem 364:103Google Scholar
  211. 211.
    Diaz AF, Bargon J (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Marcel Dekker, New York, pp 81–115Google Scholar
  212. 212.
    Tourillon G (1986) Skotheim TA (ed) Handbook of conducting polymers, vol 1. Marcel Dekker, New York, pp 293–350Google Scholar
  213. 213.
    Genies EM, Pernaut JM (1984) Synth Met 10:117Google Scholar
  214. 214.
    Tezuka Y, Aoki K, Shinozaki K (1989) J Electroanal Chem 30:369Google Scholar
  215. 215.
    Matencio T, Vieil E (1991) Synth Met 41-43:3001Google Scholar
  216. 216.
    de Gennes PG (1981) Macromolecules 14:1637Google Scholar
  217. 217.
    Peerce PJ, Bard AJ (1980) J Electroanal Chem 114:89Google Scholar
  218. 218.
    Bull RA, Fan JRF, Bard AJ (1982) J Electrochem Soc 129:1009Google Scholar
  219. 219.
    Carlin CM, Kepley LJ, Bard AJ (1986) J Electrochem Soc 132:353Google Scholar
  220. 220.
    Zotti G, Cattarin S, Comisso N (1988) J Electroanal Chem 239:387Google Scholar
  221. 221.
    Rydzewski R (1990) Continuum Mech Thermodyn 2:77Google Scholar
  222. 222.
    Inzelt G, Szabó L, Chambers JQ, Day RW (1988) J Electroanal Chem 242:265Google Scholar
  223. 223.
    Fraouna K, Delamar M, Andrieux CP (1996) J Electroanal Chem 418:109Google Scholar
  224. 224.
    Matencio T, Pernaut JM, Vieil E (2003) J Braz Chem Soc 14:1Google Scholar
  225. 225.
    Odin C, Nechtschein M (1991) Phys Rev Lett 67:1114Google Scholar
  226. 226.
    Odin C, Nechtschein M (1993) Synth Met 55–57:1281Google Scholar
  227. 227.
    Rodríguez Presa MJ, Posadas D, Florit MI (2000) J Electroanal Chem 482:117Google Scholar
  228. 228.
    Aoki K (1991) J Electroanal Chem 310:1Google Scholar
  229. 229.
    Aoki K (1994) J Electroanal Chem 373:67Google Scholar
  230. 230.
    Cao J, Aoki K (1996) Electrochim Acta 41:1787Google Scholar
  231. 231.
    Dietrich M, Heinze J (1991) Synth Metals 41–43:503Google Scholar
  232. 232.
    Gottesfeld S, Redondo A, Rubinstein I, Feldberg SW (1989) J Electroanal Chem 265:15Google Scholar
  233. 233.
    Vorotyntsev MA, Badiali JP (1994) Electrochim Acta 39:289Google Scholar
  234. 234.
    Dunsch L, Rapta P, Neudeck A, Reiners RP, Reinecke D, Apfelstedt I (1996) Dechema Monographien 132:205Google Scholar
  235. 235.
    Aoki K, Edo T, Cao (1998) J Electrochim Acta 43:285Google Scholar
  236. 236.
    Grande H, Otero TF (1999) Electrochim Acta 44:1893Google Scholar
  237. 237.
    Otero TF, Grande H, Rodrigues J (1995) J Electroanal Chem 394:211Google Scholar
  238. 238.
    Aoki K, Cao J, Hoshino Y (1994) Electrochim Acta 39:2291Google Scholar
  239. 239.
    Aoki K, Kawase M (1994) J Electroanal Chem 377:125Google Scholar
  240. 240.
    Aoki K, Teragashi Y, Tokieda M (1999) J Electroanal Chem 460:254Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations