Chemical and Electrochemical Syntheses of Conducting Polymers

Part of the Monographs in Electrochemistry book series (MOEC)


Polymers can be prepared using chemical and/or electrochemical methods of polymerization. However, most redox polymers have been synthesized by chemical polymerization. Electrochemically active groups are either built into the polymer structure inside the chain or included as a pendant group (prefunctionalized polymers), incorporated into the polymer phase during the polymerization, or fixed into the polymer network in an additional step performed after the coating procedure (post-coating functionalization). Several other alternative synthetic approaches exist; in fact, virtually the whole arsenal of synthetic polymer chemistry techniques has been exploited. The electrochemical polymerization of cheap, simple aromatic and heterocyclic compounds is of the utmost interest from an applications perspective. The reaction utilized is usually an oxidative polymerization, although reductive polymerization is also possible. Electrochemical polymerization is preferable, especially if the polymeric product is intended for use as a polymer film electrode, thin layer sensor, in microtechnology, etc., because potential control is a prerequisite for the production of good-quality material and the formation of the polymer film at the required spot to serve as an anode during synthesis. A chemical route is recommended if large amounts of polymer are needed. The polymers are obtained in an oxidized, highly conductive state containing counterions incorporated from the solution used in the preparation procedure. The mechanism and the kinetics of the electropolymerization are also discussed in this chapter.

Keywords: Chemical polymerization – Electrochemical polymerization – Post-functionalization – Mechanism and kinetics of polymerization


Cyclic Voltammograms Conducting Polymer Electrochemical Synthesis Electrochemical Quartz Crystal Microbal Redox Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) J Chem Soc Chem Commun 579Google Scholar
  2. 2.
    Ito T, Shirakawa H, Ikeda S (1974) J Polym Sci Pol Chem 12:11Google Scholar
  3. 3.
    Chiang CK, Fischer CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG (1977) Phys Rev Lett 39:1098CrossRefGoogle Scholar
  4. 4.
    Chiang CK, Druy MA, Gau SC, Heeger AJ, Louis EJ, MacDiarmid AG, Park YW, Shirakawa H (1978) J Am Chem Soc 100:1013CrossRefGoogle Scholar
  5. 5.
    Shirakawa H (2001) Angew Chem Int Ed 40:2574CrossRefGoogle Scholar
  6. 6.
    MacDiarmid AG (2001) Angew Chem Int Ed 40:2581CrossRefGoogle Scholar
  7. 7.
    Heeger AJ (2001) Angew Chem Int Ed 40:2591CrossRefGoogle Scholar
  8. 8.
    Yamamoto T (2003) Synlett 4:425CrossRefGoogle Scholar
  9. 9.
    Yamamoto T, Okuda T (1999) J Electroanal Chem 460:242CrossRefGoogle Scholar
  10. 10.
    Inzelt G, Csahók E, Kertész V (2001) Electrochim Acta 46:3955CrossRefGoogle Scholar
  11. 11.
    Diaz AF, Rubinson JF, Mark HB Jr (1988) Electrochemistry and electrode applications of electroactive/conducting polymers. In: Henrici-Olivé G, Olivé S (eds) Advances in polymer science, vol 84. Springer, Berlin, p 113Google Scholar
  12. 12.
    Genies EM, Boyle A, Lapkowski M, Tsintavis C (1990) Synth Met 36:139CrossRefGoogle Scholar
  13. 13.
    Waltman RJ, Bargon J (1986) Can J Chem 64:76CrossRefGoogle Scholar
  14. 14.
    Syed AA, Dinesan MK (1991) Talanta 38:815CrossRefGoogle Scholar
  15. 15.
    Abrantes LM, Correia JP, Savic M, Jin G (2001) Electrochim Acta 46:3181CrossRefGoogle Scholar
  16. 16.
    Arsov LD (1998) J Solid State Electrochem 2:266CrossRefGoogle Scholar
  17. 17.
    Bade K, Tsakova V, Schultze JW (1992) Electrochim Acta 37:2255CrossRefGoogle Scholar
  18. 18.
    Brandl V, Holze R (1998) Ber Bunsenges Phys Chem 102:1032Google Scholar
  19. 19.
    Brett CMA, Oliveira Brett AMCF, Pereira JLC, Rebelo C (1993) J Appl Electrochem 23:332CrossRefGoogle Scholar
  20. 20.
    Choi SJ, Park SM (2002) J Electrochem Soc 149:E26CrossRefGoogle Scholar
  21. 21.
    Cruz CMGS, Ticianelli EA (1997) J Electroanal Chem 428:185CrossRefGoogle Scholar
  22. 22.
    Desilvestro J, Scheifele W, Haas O (1992) J Electrochem Soc 139:2727CrossRefGoogle Scholar
  23. 23.
    Dinh HN, Vanysek P, Birss VI (1999) J Electrochem Soc 146:3324CrossRefGoogle Scholar
  24. 24.
    Genies EM, Lapkowski M (1987) Synth Met 21:199CrossRefGoogle Scholar
  25. 25.
    Gholamian M, Contractor AQ (1988) J Electroanal Chem 252:291CrossRefGoogle Scholar
  26. 26.
    Greef R, Kalaji M, Peter LM (1989) Faraday Disc Chem Soc 88:277CrossRefGoogle Scholar
  27. 27.
    Horányi G, Inzelt G (1988) J Electroanal Chem 257:311CrossRefGoogle Scholar
  28. 28.
    Horányi G, Inzelt G (1989) J Electroanal Chem 264:259CrossRefGoogle Scholar
  29. 29.
    Hwang RJ, Santhanan R, Wu CR, Tsai YW (2001) J Solid State Electrochem 5:280CrossRefGoogle Scholar
  30. 30.
    Jannakoudakis AD, Jannakoudakis PD, Pagalos N, Theodoridou E (1993) Electrochim Acta 38:1559CrossRefGoogle Scholar
  31. 31.
    Kalaji M, Nyholm L, Peter LM (1992) J Electroanal Chem 325:269CrossRefGoogle Scholar
  32. 32.
    Mandic Z, Duic Lj, Kovacicek (1997) Electrochim Acta 42:1389CrossRefGoogle Scholar
  33. 33.
    Kobayashi T, Yoneyama H, Tamura H (1984) J Electroanal Chem 177:293CrossRefGoogle Scholar
  34. 34.
    Koziel K, Lapkowski M (1993) Synth Met 55–57:1011CrossRefGoogle Scholar
  35. 35.
    MacDiarmid AG, Epstein AJ (1989) Faraday Disc Chem Soc 88:317CrossRefGoogle Scholar
  36. 36.
    Malinauskas A, Holze R (1998) Electrochim Acta 43:515CrossRefGoogle Scholar
  37. 37.
    Miras MC, Barbero C, Haas O (1991) Synth Met 41–43:3081CrossRefGoogle Scholar
  38. 38.
    Nunziante P, Pistoia G (1989) Electrochim Acta 34:223CrossRefGoogle Scholar
  39. 39.
    Osaka T, Nakajima T, Shiota K, Momma T (1991) J Electrochem Soc 138:2853CrossRefGoogle Scholar
  40. 40.
    Pruneanu S, Csahók E, Kertész V, Inzelt G (1998) Electrochim Acta 43:2305CrossRefGoogle Scholar
  41. 41.
    Stilwell DE, Park SM (1988) J Electrochem Soc 135:2491CrossRefGoogle Scholar
  42. 42.
    Stilwell DE, Park SM (1989) J Electrochem Soc 136:688CrossRefGoogle Scholar
  43. 43.
    Zhou S, Wu T, Kan J (2007) Eur Polym J 43:395CrossRefGoogle Scholar
  44. 44.
    Zimmermann A, Dunsch L (1997) J Mol Struct 410–411:165Google Scholar
  45. 45.
    Zotti G, Cattarin S, Comisso N (1988) J Electroanal Chem 239:387CrossRefGoogle Scholar
  46. 46.
    Viva FA, Andrade EM, Molina FV, Florit MI (1999) J Electroanal Chem 471:180CrossRefGoogle Scholar
  47. 47.
    Andrade GT, Aquirre MJ, Biaggio SR (1998) Electrochim Acta 44:633CrossRefGoogle Scholar
  48. 48.
    Zhou S, Wu T, Kan J (2007) Eur Polym J 43:395CrossRefGoogle Scholar
  49. 49.
    Yang H, Bard AJ (1992) J Electroanal Chem 339:423CrossRefGoogle Scholar
  50. 50.
    Linford RG (ed) (1987) Electrochemical science and technology of polymers, vol 1. Elsevier, LondonGoogle Scholar
  51. 51.
    Linford RG (ed) (1990) Electrochemical science and technology of polymers, vol 2. Elsevier, LondonGoogle Scholar
  52. 52.
    Lyons MEG (ed) (1994) Electroactive polymer electrochemistry, part I. Plenum, New YorkGoogle Scholar
  53. 53.
    Stejkal J, Gilbert RG (2002) Pure Appl Chem 74:857CrossRefGoogle Scholar
  54. 54.
    Stejkal J, Sapurina I (2005) Pure Appl Chem 77:815CrossRefGoogle Scholar
  55. 55.
    Tallman D, Spinks G, Dominis A, Wallace G (2002) J Solid State Electrochem 6:73Google Scholar
  56. 56.
    Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism. VCH, Weinheim, pp 124–143CrossRefGoogle Scholar
  57. 57.
    Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochim Acta 51:6025CrossRefGoogle Scholar
  58. 58.
    Roncali J (1992) Chem Rev 92:711CrossRefGoogle Scholar
  59. 59.
    Buttry DA (1991) Applications of the quartz crystal microbalance to electrochemistry. In: Bard AJ (ed) Electroanalytical chemistry, vol 17, Marcel Dekker, New York, p 1Google Scholar
  60. 60.
    Ward MD (1995) Principles and applications of the electrochemical quartz crystal microbalance. In: Rubinstein I (ed) Physical electrochemistry. Marcel Dekker, pp 293–338Google Scholar
  61. 61.
    Buck RP, Lindner E, Kutner W, Inzelt G (2004) Pure Appl Chem 76:1139CrossRefGoogle Scholar
  62. 62.
    Hepel M (1999) Electrode–solution interface studied with electrochemical quartz crystal nanobalance. In: Wieczkowski A (ed) Interfacial electrochemistry. Marcel Dekker, New YorkGoogle Scholar
  63. 63.
    Barbero CA (2005) Phys Chem Chem Phys 7:1885CrossRefGoogle Scholar
  64. 64.
    Bácskai J, Inzelt G (1991) J Electroanal Chem 310:379CrossRefGoogle Scholar
  65. 65.
    Day RW, Inzelt G, Kinstle JF, Chambers JQ (1982) J Am Chem Soc 104:6804CrossRefGoogle Scholar
  66. 66.
    Inzelt G (1989) Electrochim Acta 34:83CrossRefGoogle Scholar
  67. 67.
    Inzelt G (1990) J Electroanal Chem 287:171CrossRefGoogle Scholar
  68. 68.
    Inzelt G, Bácskai J (1991) J Electroanal Chem 308:255CrossRefGoogle Scholar
  69. 69.
    Inzelt G, Chambers JQ (1989) J Electroanal Chem 266:265CrossRefGoogle Scholar
  70. 70.
    Inzelt G, Chambers JQ, Bácskai J, Day RW (1986) J Electroanal Chem 201:301CrossRefGoogle Scholar
  71. 71.
    Aeiyach S, Zaid B, Lacaze PC (1999) Electrochim Acta 44:2889CrossRefGoogle Scholar
  72. 72.
    Bácskai J, Inzelt G, Bartl A, Dunsch L, Paasch G (1994) Synth Met 67:227CrossRefGoogle Scholar
  73. 73.
    Baker CK, Qui YJ, Reynolds JR (1991) J Phys Chem 95:4446CrossRefGoogle Scholar
  74. 74.
    Baker CK, Reynolds JR (1988) J Electroanal Chem 251:307CrossRefGoogle Scholar
  75. 75.
    Beck F, Hüsler P (1990) J Electroanal Chem 280:159CrossRefGoogle Scholar
  76. 76.
    Bonazzola C, Calvo EJ (1998) J Electroanal Chem 449:111CrossRefGoogle Scholar
  77. 77.
    Brandl V, Holze R (1998) Ber Bunsenges Phys Chem 102:1032Google Scholar
  78. 78.
    De Paoli MA, Panero S, Prosperi P, Scrosati B (1990) Electrochim Acta 35:1145CrossRefGoogle Scholar
  79. 79.
    Fujii M, Arii K, Yoshino K (1993) Synth Met 55–57:1159CrossRefGoogle Scholar
  80. 80.
    Romero AJF, Cascales JJL, Otero TF (2005) J Phys Chem B 109:21078CrossRefGoogle Scholar
  81. 81.
    Kuwabata S, Yoneyama H, Tamura H (1984) Bull Chem Soc Japan 57:2247CrossRefGoogle Scholar
  82. 82.
    Maia DJ, Neves S das, Alves OL, DePaoli MA (1999) Electrochim Acta 44:1945CrossRefGoogle Scholar
  83. 83.
    Noll JD, Nicholson MA, Van Patten PG, Chung CW, Myrick ML (1998) J Electrochem Soc 145:3320CrossRefGoogle Scholar
  84. 84.
    Otero TF, Rodríguez J (1994) Electrochim Acta 39:245CrossRefGoogle Scholar
  85. 85.
    Paasch G, Smeisser D, Bartl A, Naarman H, Dunsch L, Göpel W (1994) Synth Met 66:135CrossRefGoogle Scholar
  86. 86.
    Sabatini E, Ticianelli E, Redondo A, Rubinstein I, Risphon J, Gottesfeld S (1993) Synth Met 55–57:1293CrossRefGoogle Scholar
  87. 87.
    West K, Jacobsen T, Zachau–Christiansen B, Careem MA, Skaarup S (1993) Synth Met 55–57:1412CrossRefGoogle Scholar
  88. 88.
    Zhou M, Heinze J (1999) Electrochim Acta 44:1733CrossRefGoogle Scholar
  89. 89.
    de Surville R, Jozefowicz M, Yu LT, Perichon J, Buvet R (1968) Electrochim Acta 13:1451CrossRefGoogle Scholar
  90. 90.
    Diaz AF, Logan JA (1980) J Electroanal Chem 111:111CrossRefGoogle Scholar
  91. 91.
    Dunsch L (1975) J Prakt Chem 317:409CrossRefGoogle Scholar
  92. 92.
    Diaz AF, Castillo JI, Logan JA, Lee WE (1981) J Electroanal Chem 129:115CrossRefGoogle Scholar
  93. 93.
    Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electrochim Acta 45:2403CrossRefGoogle Scholar
  94. 94.
    Letheby H (1862) J Chem Soc 15:161CrossRefGoogle Scholar
  95. 95.
    Abruna HD (1988) Coord Chem Rev 86:135CrossRefGoogle Scholar
  96. 96.
    Haas O, Zumbrunnen HR (1981) Helv Chim Acta 64:854CrossRefGoogle Scholar
  97. 97.
    Miras MC, Barbero C, Kötz R, Haas O, Schmidt VM (1992) J Electroanal Chem 338:279CrossRefGoogle Scholar
  98. 98.
    Forrer P, Musil C, Inzelt G, Siegenthaler H (1998) In: Balabanova E, Dragieva I (eds) Proc 3rd Workshop on Nanoscience, Hasliberg, Switzerland. Heron, Sofia, p 24Google Scholar
  99. 99.
    Kertész V, Bácskai J, Inzelt G (1996) Electrochim Acta 41:2877CrossRefGoogle Scholar
  100. 100.
    Schlereth DD, Karyakin AA (1995) J Electroanal Chem 395:221CrossRefGoogle Scholar
  101. 101.
    Inzelt G, Csahók E (1999) Electroanalysis 11:744CrossRefGoogle Scholar
  102. 102.
    Karyakin AA, Bobrova OA, Karyakina EE (1995) J Electroanal Chem 399:179CrossRefGoogle Scholar
  103. 103.
    Brett CMA, Inzelt G, Kertész V (1999) Anal Chim Acta 385:119CrossRefGoogle Scholar
  104. 104.
    de Gennes PG (1981) Macromolecules 14:1637CrossRefGoogle Scholar
  105. 105.
    Barbero C, Miras MC, Haas O, Kötz R (1991) J Electrochem Soc 138:669CrossRefGoogle Scholar
  106. 106.
    Ping Z, Nauer GE, Neugebauer H, Thiener J, Neckel A (1997) J Chem Soc Faraday Trans 93:121CrossRefGoogle Scholar
  107. 107.
    Troise Frank MH, Denuault G (1993) J Electroanal Chem 354:331CrossRefGoogle Scholar
  108. 108.
    Evans GP (1990) The electrochemistry of conducting polymers. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 1. VCH, Weinheim, p 1CrossRefGoogle Scholar
  109. 109.
    Lyons MEG (ed) (1996) Electroactive polymer electrochemistry, part II. Plenum, New YorkGoogle Scholar
  110. 110.
    Stilwell DE, Park SM (1989) J Electrochem Soc 136:688CrossRefGoogle Scholar
  111. 111.
    Ferreira V, Tenreiro A, Abrantes LM (2006) Sensor Actuat B 119:632CrossRefGoogle Scholar
  112. 112.
    Levi MD, Pisarevskaya EYu, Molodkina EB, Danilov AI (1992) J Chem Soc Chem Commun p 149Google Scholar
  113. 113.
    Levi MD, Pisarevskaya EYu, Molodkina EB, Danilov AI (1993) Synth Met 54:195CrossRefGoogle Scholar
  114. 114.
    Agui L, Lopez-Huertas MA, Yanez-Sedeno P, Pingarron JM (1996) J Electroanal Chem 414:141CrossRefGoogle Scholar
  115. 115.
    Gratzl M, Hsu DF, Riley AM, Janata J (1990) J Phys Chem 94:5973CrossRefGoogle Scholar
  116. 116.
    Hillman AR, Swann MJ (1988) Electrochim Acta 33:1303CrossRefGoogle Scholar
  117. 117.
    Lankinen E, Sundholm G, Talonen P, Granö H, Sundholm F (1999) J Electroanal Chem 460:176CrossRefGoogle Scholar
  118. 118.
    Meerholz K, Heinze J (1996) Electrochim Acta 41:1839CrossRefGoogle Scholar
  119. 119.
    Waltman RJ, Diaz AF, Bargon J (1984) J Electrochem Soc 131:1452CrossRefGoogle Scholar
  120. 120.
    Wang J, Keene FR (1996) J Electroanal Chem 405:59CrossRefGoogle Scholar
  121. 121.
    Zanardi C, Scanu R, Pigani L, Pilo MI, Sanna G, Seeber R, Spano N, Terzi F, Zucca A (2006) Electrochim Acta 51:4859CrossRefGoogle Scholar
  122. 122.
    Benito D, Gabrielli C, Garcia-Jareno JJ, Keddam M, Perrot H, Vicente F (2003) Electrochim Acta 48:4039CrossRefGoogle Scholar
  123. 123.
    Zhang S, Nie G, Han X, Xu J, Li M, Cai T (2006) Electrochim Acta 51:5738CrossRefGoogle Scholar
  124. 124.
    Loganathan K, Pickup PG (2006) Langmuir 22:10612CrossRefGoogle Scholar
  125. 125.
    Zhao ZS, Pickup PG (1996) J Electroanal Chem 404:55CrossRefGoogle Scholar
  126. 126.
    Tagliazucchi ME, Calvo EJ (2007) J Electroanal Chem 599:249CrossRefGoogle Scholar
  127. 127.
    Martin CR, Parthasarathy R, Menon V (1993) Synth Met 55–57:1165CrossRefGoogle Scholar
  128. 128.
    Palys B, Celuch P (2006) Electrochim Acta 51:4115CrossRefGoogle Scholar
  129. 129.
    Csahók E, Vieil E, Inzelt G (1999) Synth Met 101:843CrossRefGoogle Scholar
  130. 130.
    Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinGoogle Scholar
  131. 131.
    Gergely A, Inzelt G (2001) Electrochem Commun 3:753CrossRefGoogle Scholar
  132. 132.
    Inzelt G (2003) J Solid State Electrochem 7:503CrossRefGoogle Scholar
  133. 133.
    Fehér K, Inzelt G (2002) Electrochim Acta 47:3551CrossRefGoogle Scholar
  134. 134.
    Inzelt G (2002) J Solid State Electrochem 6:265CrossRefGoogle Scholar
  135. 135.
    Shah AHA, Holze R (2006) J Solid State Electrochem 11:38CrossRefGoogle Scholar
  136. 136.
    Inzelt G, Puskás Z (2006) J Solid State Electrochem 10:125CrossRefGoogle Scholar
  137. 137.
    Huguenin F, Girotto EM, Torresi RM, Buttry DA (2002) J Electroanal Chem 536:37CrossRefGoogle Scholar
  138. 138.
    Svorc J, Miertu S, Katrlik J, Stredansk M (1997) Anal Chem 69:2086CrossRefGoogle Scholar
  139. 139.
    Mohamoud MA, Hillman AR (2007) J Solid State Electrochem 11:1043CrossRefGoogle Scholar
  140. 140.
    Rishpon J, Redondo A, Derouin C, Gottesfeld S (1990) J Electroanal Chem 294:73CrossRefGoogle Scholar
  141. 141.
    Martinusz K, Czirók E, Inzelt G (1994) J Electroanal Chem 379:437CrossRefGoogle Scholar
  142. 142.
    Reynolds JR, Pyo M, Qiu YJ (1993) Synth Met 55–57:1388CrossRefGoogle Scholar
  143. 143.
    Kertész V, Van Berkel GJ (2001) Electroanalysis 13:1425CrossRefGoogle Scholar
  144. 144.
    Chen SM, Lin KC (2002) J Electroanal Chem 523:93CrossRefGoogle Scholar
  145. 145.
    Horányi G, Inzelt G (1988) Electrochim Acta 33:947CrossRefGoogle Scholar
  146. 146.
    Chang CF, Chen WC, Wen TC, Gopalan A (2002) J Electrochem Soc 149:E298CrossRefGoogle Scholar
  147. 147.
    Mazeikiene R, Malinauskas A (1996) ACH Models Chem 133:471Google Scholar
  148. 148.
    Desilvestro J, Scheifele W (1993) J Mater Chem 3:263CrossRefGoogle Scholar
  149. 149.
    Ateh DD, Navsaria HA, Vadgama P (2006) J Roy Soc Interface 3:741CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Personalised recommendations