# Stochastic Differential Equations Involving Fractional Brownian Motion

Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1929)

## Existence and Uniqueness of Solutions: the Results of Nualart and Răşcanu

Consider the function $$\sigma = \sigma \left( {t,x} \right):\left[ {0,T} \right] \times {\rm R} \to {\rm R}$$ satisfying the assumptions: σ is differentiable in x, there exist and for any $$M > 0,0 < \gamma ,\kappa \le 1$$ R > 0 there exists M R > 0 such that
1. (i)
σ is Lipschitz continuous in x
$$\left| {\sigma \left( {t,x} \right) - \sigma \left( {t,y} \right)} \right| \le M\left| {x - y} \right|,\forall t \in \left[ {0,T} \right],x,y \in {\rm R};$$

2. (ii)
x-derivative of σ is local Hölder continuous in x:
$$\left| {\sigma _x \left( {t,x} \right) - \sigma _x \left( {t,y} \right)} \right| \le M_R \left| {x - y} \right|^\kappa ,\forall \left| x \right|,\left| y \right| \le {\rm R,}t \in \left[ {0,T} \right];$$

3. (iii)
σ is Hölder continuous in time:
$$\left| {\sigma \left( {t,x} \right) - \sigma \left( {s,x} \right)} \right| + \left| {\sigma _x \left( {t,x} \right) - \sigma _x \left( {s,x} \right)} \right| \le M\left| {t - s} \right|^\gamma ,\forall x \in {\rm R,}t,s \in \left[ {0,T} \right].$$

Let $$0 < \beta < 1/2,f \in W_0^\beta \left[ {0,T} \right],g \in W_1^{1 - \beta } \left[ {0,T} \right].$$ We need some preliminary estimates, in addition to Lemmas 2.1.9 and 2.1.10.

Consider on
$$W_0^\beta \left[ {0,T} \right]$$
the norm, equivalent to $$\left\| \cdot \right\|_{0,\beta } :$$
$$\left\| f \right\|_{0,\beta ,\lambda } : = \frac{{\sup }}{{t \in \left[ {0,T} \right]}}e^{ - \lambda t} \varphi _f^\beta \left( t \right).$$

## Keywords

Weak Solution Strong Solution Wiener Process Fractional Brownian Motion Orlicz Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Abramson, G., Krenkre, V.M., Yates, T.L., Parmenter, R.R.: Travelling Waves of Infection in the Hantavirus Epidemics. Bull. Math. Biol., 65, 519–534 (2003)
2. 2.
Acuna-Soto, R., Stahle, D.W., Cleaveland, M.K., Therell, M.D.: Megadrougth and Megadeath in 16th Century Mexico. Emerg. Infect. Dis., 8, 360–362 (2002)
3. 3.
Ainseba, B., Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: An Application of Homogenization Techniques to Population Dynamics Models. Commun. Pure Appl. Anal., 1, 19–33 (2002)
4. 4.
Allen, L.J.S.: An Introduction to Stochastic Processes with Application to Biology. Prentice Hall, Upper Saddle River, N.J. (2003)Google Scholar
5. 5.
Anderson, R.M., Jackson, H.C., May, R.M., Smith, A.D.M.: Population Dynamics of Foxes Rabies in Europe. Nature, 289, 765–770 (1981)
6. 6.
Anderson, R.M., May, R.M.: Population Biology of Infectious Diseases. Springer, Berlin Heidelberg New York (1982)Google Scholar
7. 7.
Bailey, N.T.J.: The Mathematical Theory of Infectious Diseases and its Applications, 2nd edition. Hafner Press, New York (1975)
8. 8.
Bendahmane, M., Langlais, M., Saad, M.: On Some Anisotropic Reaction–Diffusion Systems with L 1-Data Modeling the Propagation of an Epidemic Disease. Nonlinear Anal., Ser. A, Theory Methods, 54, 617–636 (2003)
9. 9.
Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J.: A Clarification of Transmission Terms in Host-Microparasite Models; Numbers, Densities and Areas. Epidemiol. Infect., 129, 147–153 (2002)
10. 10.
Berestycki, H., Hamel, F., Roques, L.: Analysis of a Periodically Fragmented Environment Model: I. Influence of Periodic Heterogeneous Environment on Species Persistence. J. Math. Biol., 51, 75–113 (2005)
11. 11.
Bernoulli, D.: Essai d’une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir. Mém. Math. Phys. Acad. Roy. Sci. Paris, 1–45 (1760)Google Scholar
12. 12.
Berthier, K., Langlais, M., Auger, P., Pontier, D.: Dynamics of Feline Virus with Two Transmission Modes Within Exponentially Growing Host Populations. Proc. Roy. Soc. Lond., B, 267, 2049–2056 (2000)
13. 13.
Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin Heidelberg New York (2001)
14. 14.
Busenberg, S., Cooke, K.C.: Vertically Transmitted Diseases, Biomathematics Volume 23. Springer, Berlin Heidelberg New York (1993)Google Scholar
15. 15.
Cantrell, R.S., Cosner C.: Spatial Ecology Via Reaction Equations. Wiley, Chichester (2003)
16. 16.
Capasso, V.: Mathematical Structures of Epidemic Systems. Lecture Notes in Biomathematics Volume 97. Springer, Berlin Heidelberg New York (1993)
17. 17.
Caswell, H.: Matrix Population Models 2nd edition. Sinauer Associates Inc., Sunderland, Massachusetts (2001)Google Scholar
18. 18.
Cazenave, T., Haraux A.: An Introduction to Semilnear Evolution Equations. Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford (1998)Google Scholar
19. 19.
Courchamp, F., Clutton-Brock, T., Grenfell, B.: Inverse Density Dependence and the Allee Effect. TREE, 14, 405–410 (1999)Google Scholar
20. 20.
Cushing J.: An introduction to Structured Population Dynamics. CBMS–NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia (1998)Google Scholar
21. 21.
Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Cambridge University Press, Cambridge (1999)
22. 22.
Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J.: On the Definition and the Computation of the Basic Reproduction Ration R 0 in Models for Infectious Diseases in Heterogeneous Population. J. Math. Biol., 28, 365–382 (1990)
23. 23.
Diekmann, O., De Jong, M.C.M., De Koeijer, A.A., Reijnders, P.: The Force of Infection in Populations of Varying Size: A Modeling Problem. J. Biol. Syst., 3, 519–529 (1995)
24. 24.
Diekmann, O., Heesterbeck, J.A.P.: Mathematical Epidemiology of Infectious Diseases, Mathematical and Computational Biology. Wiley, Chichester (2000)Google Scholar
25. 25.
Ducrot, A., Langlais, M.: Travelling waves in invasion processes with pathogens. Mathematical Models and Methods in Applied Sciences, 18, 1–15 (2008)
26. 26.
Edelstein-Keshet, L.: Mathematical Models In Biology. The Random House Birkhäuser Mathematical Series, New York (1988)
27. 27.
Fitzgibbon, W.E., Langlais, M.: Weakly Coupled Hyperbolic Systems Modeling the Circulation of Infectious Disease in Structured Populations. Math. Biosci., 165, 79–95 (2000)
28. 28.
Fitzgibbon, W.E., Hollis, S., Morgan, S.: Steady State Solutions for Balanced Reaction Diffusion Systems on Heterogeneous Domains. Differ. Integral Equ., 12, 225–241 (1999)
29. 29.
Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Mathematical Model for the Spread of Feline Leukemia Virus (FeLV) through a Highly Heterogeneous Spatial Domain. SIAM, J. Math. Anal., 33, 570–588 (2001)Google Scholar
30. 30.
Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Reaction–Diffusion System Modeling Direct and Indirect Transmission of a Disease. DCDS B 4, 893–910 (2004)
31. 31.
Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Reaction Diffusion System on Non-Coincident Domains Modeling the Circulation of a Disease Between Two Host Populations. Differ. Integral Equ., 17, 781–802 (2004)
32. 32.
Fitzgibbon, W.E., Langlais, M., Marpeau, F., Morgan, J.J.: Modeling the Circulation of a Disease Between Two Host Populations on Non Coincident Spatial Domains. Biol. Invasions, 7, 863–875 (2005)
33. 33.
Fitzgibbon, W.E., Langlais, M., Morgan, J.J.: A Mathematical Model for Indirectly Transmitted Diseases. Math. Biosci., 206, 233–248 (2007)
34. 34.
Fitzgibbon, W.E., Morgan, J.J.: Diffractive Diffusion Systems with Locally Defined Reactions, Evolution Equations. Ed. by Goldstein G. et al., M. Dekker, New York, 177–186 (1994)Google Scholar
35. 35.
Fouchet, D., Marchandeau, S., Langlais M., Pontier, D.: Waning of Maternal Immunity and the Impact of Diseases: The Example of Myxomatosis in Natural Rabbit Population. J. Theor. Biol., 242, 81–89 (2006)
36. 36.
Fromont, E., Pontier, D., Langlais, M.: Dynamics of a Feline Retrovirus (FeLV) in Hosts Populations with Variable Structure. Proc. Roy. Soc. Lond., B, 265, 1097–1104 (1998)
37. 37.
Hale, J.: Asymptotic Behavior of Dissiptive Systems. Mathematical Surveys and Monographs 25, AMS Providence, RI (1988)Google Scholar
38. 38.
Hale, J.K., Koçak, H.: Dynamics and Bifurcations. Springer, Berlin Heidelberg New York (1991)
39. 39.
Hartman, P.: Ordinary Differential Equations. Wiley, New York (1964)
40. 40.
Hetchcote, H.W.: The Mathematics of Infectious Diseases, SIAM Rev., 42, 599–653 (2000)
41. 41.
Hilker, F.M., Lewis, M.A., Seno, H., Langlais, M., Malchow, H.: Pathogens Can Slow Down or Reverse Invasion Fronts of their Hosts. Biol. Invasions, 7, 817–832 (2005)
42. 42.
Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Springer, Berlin Heidelberg New York (1974)
43. 43.
Hoppensteadt, F.C.: Mathematical Theories of Populations: Demographics, Genetics and Epidemics. CBMS, vol 20, SIAM, Philadelphia (1975)Google Scholar
44. 44.
Horton, P.: Global Existence of Solutions to Reaction Diffusion Systems Heterogeneous Domains, Dissertation, Texas A & M University, College Station (1998)Google Scholar
45. 45.
Iannelli, M.: Mathematical theory of Age-Structured Population Dynamics. Applied Mathematics Monographs no. 7, C.N.R. Pisa (1994)Google Scholar
46. 46.
Kermack, W.O., Mac Kendrick, A.G.: Contributions to the mathematical theory of epidemics, part I, Proc. Roy. Soc. Lond., A, 115, 700–721 (1927). Reprinted with parts II and III in Bull. Math. Biol., 53, 33–118 (1991)
47. 47.
Kesavan, S.: Topics in Functional Analysis and Applications, Wiley, New York (1989)
48. 48.
Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translation AMS 23, Providence, RI (1968)Google Scholar
49. 49.
Langlais, M., Phillips, D.: Stabilization of Solutions of Nonlinear Evolution Equations. Nonlinear Anal. T.M.A., 9, 321–333 (1985)
50. 50.
Langlais, M., Latu, G., Roman, J., Silan, P.: Performance Analysis and qualitative Results of an Efficient Parallel Stochastic Simulator for a Marine Host–Parasite system. Concurrency Comput.: pract. exp., 15, 1133–1150 (2003)
51. 51.
Murray, J.D.: Mathematical Biology I: An introduction, 3rd edition. Springer, Berlin Heidelberg New York (2003)Google Scholar
52. 52.
Naulin, J.M.: A Contribution of Sparse Matrices Tools to Matrix Population Model Analysis. Math. Biosci., 177–178, 25–38 (2002)
53. 53.
Okubo, A, Levin, S.: Difusion and ecological problems: Modern perspectives, 2nd edn. Springer, New York (2001)Google Scholar
54. 54.
Olsson, G.E., White, N., Ahlm, C., Elgh, F., Verlemyr, A.C., Juto, P.: Demographic Factors Associated with Hantavirus Infection in Bank Voles (Clethrionomys glareolus). Emerg. Infect. Dis., 8, 924–929 (2002)Google Scholar
55. 55.
Rutledge, C.R., Day, J.F., Stark, L.M., Tabachnick, W.J.: West-Nile Virus Infection Rates in Culex nigricalpus (Diptera: Culicidae) do not Reflect Transmission Rates in Florida. J. Med. Entomol., 40, 253–258 (2003)
56. 56.
Sauvage, F., Langlais, M., Yoccoz, N.G., Pontier, D.: Modelling Hantavirus in Cyclic Bank Voles: The Role of Indirect Transmission on Virus Persistence. J. Anim. Ecol., 72, 1–13 (2003)
57. 57.
Sauvage, F., Langlais, M., Yoccoz, N-G., Pontier, D.: Predicting the Emergence of Human Hantavirus Disease Using a Combination of Viral Dynamics and Rodent Demographic Patterns. Epidemiol. Infect., 135, 46–56 (2007)
58. 58.
Schmaljohn, C., Hjelle, B.: Hantaviruses: A Global Disease Problem. Emerg. Infect. Dis., 3, 95–104 (1997)
59. 59.
Schmitz, O.J., Nudds, T.D.: Parasite-Mediated Competition in Deer and Moose: How Strong is the Effect of Meningeal Worm on Moose? Ecol. Appl., 4, 91–103 (1994)
60. 60.
Seftel, Z.: Estimates in L q of Solutions of Elliptic Equations with Discontinuous Coefficients and Satisfying General Boundary Conditions and Conjugacy Conditions. Soviet Math. Doklady, 4, 321–324 (1963)
61. 61.
Shaman, J., Day, J.F., Stieglitz, M.: Drought-Induced Amplification of Saint Louis Encephalitis Virus, Florida. Emerg. Infect. Dis., 8, 575–580 (2002)Google Scholar
62. 62.
Shigesada, N., Kawasaki. K.: Biological Invasions: Theory and Practice, Oxford University Press, Oxford (1997)Google Scholar
63. 63.
Stewart, H.: Generation of Analytic Semigroups by Strongly Elliptic Operators. Trans. A.M.S., 199, 141–162 (1974)
64. 64.
Stewart, H.: Spectral Theory of Heterogeneous Diffusion Systems. J. Math. Anal. Appl., 54, 59–78 (1976)
65. 65.
Stewart, H.: Generation of Analytic Semigroups by Strongly El liptic Operators Under General Boundary Conditions, Trans. A.M.S., 259, 299–310 (1980)
66. 66.
Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003)
67. 67.
Tran, A., Gardon, J., Weber, S., Polidori, L.: Mapping Disease Incidence in Suburban Areas Using Remotely Sensed Data. Am. J. Epidemiol, 252, 662–668 (2004)Google Scholar
68. 68.
Tran, A., Deparis, X., Dussart, P., Morvan, J., Rabarison, P., Polidori, L., Gardon, J.: Dengue Spatial and Temporal Patterns, French Guiana, 2001. Emerg. Infect. Dis., 10, 615–621 (2004)Google Scholar
69. 69.
Webb, G.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)
70. 70.
Wolf, C., Sauvage, F., Pontier, D., Langlais, M.: A multi-Patch Model with Periodic Demography for a Bank Vole – Hantavirus System with Variable Maturation Rate. Math. Popul. Stud., 13, 153–177 (2006)
71. 71.
Wolf, C.: Modelling and Mathematical Analysis of the Propagation of a Microparasite in a Structured Population in Heterogeneous Environment (in French). Ph.D Thesis, Bordeaux 1 University, Bordeaux (2005)Google Scholar
72. 72.
Yoccoz, N.G., Hansson, L., Ims, R.A.: Geographical Differences in Size, Reproduction and Behaviour of Bankvoles in Relation to Density Variations. Pol J. Ecol., 48, 63–72 (2000)Google Scholar