Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1929))

  • 3018 Accesses

The Elements of Fractional Calculus

Let α > 0 (and in most cases below α < 1 though this is not obligatory). Define the Riemann–Liouville left- and right-sided fractional integrals on (a, b) of order α by

$$\left( {I_{a + }^\alpha f} \right)\left( x \right): = \frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_a^x {f\left( t \right)\left( {x - t} \right)^{^{\alpha - 1} } dt,} $$

and

$$\left( {I_{b - }^\alpha f} \right)\left( x \right): = \frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_x^b {f\left( t \right)\left( {t - x} \right)^{^{\alpha - 1} } dt,} $$

respectively.

We say that the function \(f \in D\left( {I_{a + \left( {b - } \right)}^\alpha } \right)\) (the symbol \(D\left( \cdot \right)\) denotes the domain of the corresponding operator), if the respective integrals converge for almost all (a.a.) \(x \in \left( {a,b} \right)\) (with respect to (w.r.t.) Lebesgue measure).

The Riemann-Liouville fractional integrals on R are defined as

$$\left( {I_ + ^\alpha f} \right)\left( x \right): = \frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_{ - \infty }^x {f\left( t \right)\left( {x - t} \right)^{\alpha - 1} } dt,$$

and

$$\left( {I_ - ^\alpha f} \right)\left( x \right): = \frac{1}{{\Gamma \left( \alpha \right)}}\int\limits_x^\infty {f\left( t \right)\left( {t - x} \right)^{\alpha - 1} } dt,$$

respectively.

The function \(f \in D\left( {I_ \pm ^\alpha } \right)\) if the corresponding integrals converge for a.a.\(x \in R\). According to (SKM93), we have inclusion \(L_p \left( R \right) \subset D\left( {I_ \pm ^\alpha } \right),1 \le p < \frac{1}{\alpha }.\). Moreover, the following Hardy–Littlewood theorem holds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Adam, N. Bellomo: A Survey of Models for Tumor-Immune System Dynamics (Birkhäuser, Boston 1997)

    MATH  Google Scholar 

  2. J. Adam, S. Maggelakis: Diffusion related growth characteristics of a spherical prevascular carcinoma, Bull. Math. Biol. 52 (1990) pp 549–582

    MATH  Google Scholar 

  3. B. Ainseba: Age-dependent population dynamics diffusive systems, Disc. Cont. Dyn. Sys.-Ser. B 4 (2004) pp 1233–1247

    MATH  MathSciNet  Google Scholar 

  4. B. Ainseba, S. Anita: Local exact controllability of the age-dependent population dynamics with diffusion, Abst. Appl. Anal. 6 (2001) pp 357–368

    MATH  MathSciNet  Google Scholar 

  5. B. Ainseba, B. M. Langlais: On a population control problem dynamics with age dependence and spatial structure, J. Math. Anal. Appl. 248 (2000) pp 455–474

    MATH  MathSciNet  Google Scholar 

  6. J. Al-Omari, S. A. Gourley: Monotone travelling fronts in an age-structured reaction-diffusion model of a single species, J. Math. Biol. 45 (2002) pp 294–312

    MATH  MathSciNet  Google Scholar 

  7. D. Ambrosi, L. Preziosi: On the closure of mass balance models for tumor growth, Math. Mod. Meth. Appl. Sci. 12 (2002) pp 737–754

    MATH  MathSciNet  Google Scholar 

  8. A. Anderson: A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion, Math. Med. Biol. 22 (2005) pp 163–186

    MATH  Google Scholar 

  9. A. Anderson, M. Chaplain: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis, Invasion Metastasis 16 (1996) pp 222–234

    Google Scholar 

  10. A. Anderson, M. Chaplain: Continuous and discrete mathematical models of tumor-induced angiogenesis, Bull. Math. Biol. 60 (1998) pp 857–899

    MATH  Google Scholar 

  11. W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. Lotz, U. Moustakas, R. Nagel, F. Neubrander, U. Schlotterbeck: One-Parameter Semigroups of Positive Operators (Springer Lecture Notes in Mathematics 1184, New York 1986)

    MATH  Google Scholar 

  12. O. Arino: A survey of structured cell-population dynamics, Acta Biotheoret. 43 (1995) pp 3–25

    Google Scholar 

  13. B. Ayati: A variable time step method for an age-dependent population model with nonlinear diffusion, SIAM J. Num. Anal. 37 (2000) pp 1571–1589

    MATH  MathSciNet  Google Scholar 

  14. B. Ayati: A structured-population model of Proteus mirabilis swarm-colony development, J. Math. Biol. 52 (2006) pp 93–114

    MATH  MathSciNet  Google Scholar 

  15. B. Ayati, T. Dupont: Galerkin methods in age and space for a population model with nonlinear diffusion, SIAM J. Num. Anal. 40 (2000) pp 1064–1076

    MathSciNet  Google Scholar 

  16. B. Ayati, G. Webb, R. Anderson: Computational methods and results for structured multiscale models of tumor invasion, SIAM J. Multsc. Mod. Simul. 5 (2006) pp 1–20

    MATH  MathSciNet  Google Scholar 

  17. J. Banasiak, L. Arlotti: Perturbations of Positive Semigroups with Applications (Springer, Berlin Heidelberg New York, 2006)

    MATH  Google Scholar 

  18. N. Bellomo, L. Preziosi: Modelling and mathematical problems related to tumor evolution and its interaction with the immune system, Math. Comp. Mod. 32 (2000) pp 413–452

    MATH  MathSciNet  Google Scholar 

  19. G. Bell, E. Anderson: Cell growth and division I. A mathematical model with applications to cell volume distributions in mammalian suspension cultures, Biophys. J. 7 (1967) pp 329–351

    Google Scholar 

  20. R. Bellman, K. Cooke: Differential Difference Equations (Academic, New York 1963)

    MATH  Google Scholar 

  21. A. Bertuzzi, A. Gandolfi: Cell kinetics in a tumor cord, J. Theor. Biol. 204 (2000) pp 587–599

    Google Scholar 

  22. A. Bertuzzi, A. d’Onofrio, A. Fasano, A. Gandolfi: Modeling cell populations with spatial structure: steady state and treatment-induced evolution of tumor cords, Discr. Cont. Dyn. Sys. B 4 (2004) pp 161–186

    MATH  MathSciNet  Google Scholar 

  23. A. Bressan: Hyperbolic Systems of Conservation Laws, (Oxford University Press, Oxford 2000)

    MATH  Google Scholar 

  24. S. Busenberg, M. Iannelli: Separable models in age-dependent population dynamics, J. Math. Biol. 22 (1985) pp 145–173

    MATH  MathSciNet  Google Scholar 

  25. S. Busenberg, M. Iannelli: A class of nonlinear diffusion problems in age-dependent population dynamics, Nonl. Anal. Theory. Meth. Appl. 7 (1983) pp 501–529

    MATH  MathSciNet  Google Scholar 

  26. S. Busenberg, K. Cooke: Vertically Transmitted Diseases, (Springer Biomathematics 23, New York 1992)

    Google Scholar 

  27. H. Byrne, M. Chaplain: Free boundary value problems associated with the growth and development of multicellular spheroids, Eur. J. Appl. Math. 8 (1997) pp 639–658

    MATH  MathSciNet  Google Scholar 

  28. H. M. Byrne, S. A. Gourley: The role of growth in avascular tumor growth, Math. Comp. Mod. 26 (1997) 35–55

    MATH  MathSciNet  Google Scholar 

  29. H. Byrne, L. Preziosi: Modelling solid tumour growth using the theory of mixtures, Math. Med. Biol. 20 (4) (2003) pp 341–366

    MATH  MathSciNet  Google Scholar 

  30. C. Castillo-Chavez, Z. Feng: Global stability of an age-structure model for TB and its applications to optimal vaccination, Math. Biosci. 151 (1984) pp 135–154

    Google Scholar 

  31. W. Chan, B. Guo: On the semigroups of age-size dependent population dynamics with spatial diffusion, Manusc. Math. 66 (1989) pp 161–180

    MATH  MathSciNet  Google Scholar 

  32. W. L. Chan, B. Z. Guo: On the semigroups for age dependent population dynamics with spatial diffusion source, J. Math. Anal. Appl. 184 (1994) pp 190–199

    MATH  MathSciNet  Google Scholar 

  33. Ph. Clement, H. Heijmans, S. Angenent, C. van Duijn, B. de Pagter: One-Parameter Semigroups (North Holland, Amsterdam 1987)

    MATH  Google Scholar 

  34. A. Coale: The Growth and Structure of Human Populations (Princeton University Press, Princeton 1972)

    Google Scholar 

  35. S. Cui, A. Friedman: Analysis of a mathematical model of the growth of necrotic tumors, J. Math. Anal. Appl. 255 (2001) pp 636–677

    MATH  MathSciNet  Google Scholar 

  36. J. Cushing: An Introduction to Structured Population Dynamics (SIAM, Philadelphia 1998)

    MATH  Google Scholar 

  37. C. Cusulin, M. Iannelli, G. Marinoschi: Age-structured diffusion in a multi-layer environment, Nonl. Anal. 6 (2005) pp 207–223

    MATH  MathSciNet  Google Scholar 

  38. E. DeAngelis, L. Preziosi: Advection-dffusion models for solid tumour evolution in vivo and related free boundary problem, Math. Mod. Meth. Appl. Sci. 10 (2000) pp 379–407

    MathSciNet  Google Scholar 

  39. M. Delgado, M. Molina-Becerra, A. Suez: A nonlinear age-dependent model with spatial diffusion, J. Math. Anal. Appl. 313 (2006) pp 366–380

    MATH  MathSciNet  Google Scholar 

  40. Q. Deng, T. Hallam: An age structured population model in a spatially heterogeneous environment: Existence and uniqueness theory, Nonl. Anal. 65 (2206) pp 379–394

    Google Scholar 

  41. G. Diblasio: Non-linear age-dependent population diffusion, J. Math. Biol. 8 (1979) pp 265–284

    MathSciNet  Google Scholar 

  42. O. Diekmann, Ph. Getto: Boundedness, global existence and continuous dependence for nonlinear dynamical systems describing physiologically structured populations, J. Dif. Eqs. 215 (2005) pp 268–319

    MATH  MathSciNet  Google Scholar 

  43. O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J.A.J. Metz, H. Thieme: On the formulation and analysis of general deterministic structured population models II. Nonlinear theory, J. Math. Biol. 2 (2001) pp 157–189

    Google Scholar 

  44. O. Diekmann, H. Heijmans, H. Thieme: On the stability of the cell size distribution, J. Math. Biol. 19 (1984) pp 227–248

    MATH  MathSciNet  Google Scholar 

  45. O. Diekmann, H. Heijmans, H. Thieme: On the stability of the cell size distribution II. Time-periodic development rates, Comp. Math. Appl. Part A 12 (1986) pp 491–512

    Google Scholar 

  46. J. Dyson, R. Villella-Bressan, G. Webb: Asymptotic behavior of solutions to abstract logistic equations, Math. Biosci. 206 (2007) pp 216–232

    MATH  MathSciNet  Google Scholar 

  47. J. Dyson, R. Villella-Bressan, G. Webb: The evolution of a tumor cord cell population, Comm. Pure Appl. Anal. 3 (2004) pp 331–352

    MATH  MathSciNet  Google Scholar 

  48. J. Dyson, R. Villella-Bressan, G. Webb: The steady state of a maturity structured tumor cord cell population, Discr. Cont. Dyn. Sys. B, 4 (2004) pp 115–134

    MATH  MathSciNet  Google Scholar 

  49. K-J. Engel, R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, K-J. Engel, R. Nagel, Eds., (Springer Graduate Texts in Mathematics 194, New York, 2000)

    Google Scholar 

  50. G. Fragnelli, L. Tonetto: A population equation with diffusion, J. Math. Anal. Appl. 289 (2004) pp 90–99

    MATH  MathSciNet  Google Scholar 

  51. W. Feller: On the integral equation of renewal theory, Ann. Math. Stat. 12 (1941) pp 243–267

    MATH  MathSciNet  Google Scholar 

  52. Z. Feng, W. Huang, C. Castillo-Chavez: Global behavior of a multi-group SIS epidemic model with age structure, J. Diff. Eqs. 218(2) (2005) pp 292–324

    MATH  MathSciNet  Google Scholar 

  53. Z. Feng, C-C. Li, F. Milner: Schistosomiasis models with density dependence and age of infection in snail dynamics, Math. Biosci. 177–178 (2002) pp 271–286

    MathSciNet  Google Scholar 

  54. W. Fitzgibbon, M. Parrott, G. Webb: Diffusion epidemic models with incubation and crisscross dynamics, Math. Biosci. 128 (1995) pp 131–155

    MATH  MathSciNet  Google Scholar 

  55. W. Fitzgibbon, M. Parrott, G. Webb: A diffusive age-structured SEIRS epidemic model, Meth. Appl. Anal. 3 (1996) pp 358–369

    MATH  MathSciNet  Google Scholar 

  56. A. Friedman: A hierarchy of cancer models and their mathematical challenges, Discr. Cont. Dyn. Sys. B 4 (2004) pp 147–160

    MATH  Google Scholar 

  57. A. Friedman, F. Reitich: On the existence of spatially patterned dormant malignancies in a model for the growth of non-necrotic vascular tumors, Math. Mod. Meth. Appl. Sci. 77 (2001) pp 1–25

    MathSciNet  Google Scholar 

  58. M. Garroni, M. Langlais: Age-dependent population diffusion with external constraint, J. Math. Biol. 14 (1982) pp 77–94

    MATH  MathSciNet  Google Scholar 

  59. J. Goldstein: Semigroups of Linear Operators and Applications (Oxford University Press, New York 1985)

    MATH  Google Scholar 

  60. H. Greenspan: Models for the growth of solid tumor by diffusion, Stud. Appl. Math. 51 (1972), pp 317–340

    MATH  Google Scholar 

  61. G. Greiner: A typical Perron-Frobenius theorem with applications to an age-dependent population equation, in Infinite Dimensional Systems, Eds. F. Kappel, W. Schappacher (Springer Lecture Notes in Mathematics 1076, 1989) pp 786–100

    Google Scholar 

  62. G. Greiner, R. Nagel: Growth of cell populations via one-parameter semigroups of positive operators in Mathematics Applied to Science, Eds. J.A. Goldstein, S. Rosencrans, and G. Sod, Academic Press, New York (1988) pp 79–104

    Google Scholar 

  63. G. Grippenberg, S-O. Londen, O. Staffans: Volterra Integral and Functional Equations (Cambridge University Press, Cambridge 1990)

    Google Scholar 

  64. M. Gurtin, R. MacCamy: Nonlinear age-dependent population dynamics, Arch. Rat. Mech. Anal. 54 (1974) pp 281–300

    MATH  MathSciNet  Google Scholar 

  65. M. Gurtin, R. MacCamy: Diffusion models for age-structured populations, Math. Biosci. 54 (1981) pp 49–59

    MATH  MathSciNet  Google Scholar 

  66. M. Gyllenberg: Nonlinear age-dependent poulation dynamics in continuously propagated bacterial cultures, Math. Biosci. 62 (1982) pp 45–74

    MATH  MathSciNet  Google Scholar 

  67. H. Heijmans: The dynamical behaviour of the age-size-distribution of a cell population, in The Dynamics of Physiologically Structured Populations (Springer Lecture Notes in Biomathematics 68, 1986) pp 185–202

    Google Scholar 

  68. E. Hille, R. Phillips: Functional Analysis and Semigroups, (American Mathematical Society Colloquium Publications, Providence 1957)

    Google Scholar 

  69. F. Hoppensteadt: Mathematical Theories of Populations: Demographics, Genetics, and Epidemics (SIAM, Philadelphia 1975)

    MATH  Google Scholar 

  70. C. Huang: An age-dependent population model with nonlinear diffusion in R n, Quart. Appl. Math. 52 (1994) pp 377–398

    MATH  MathSciNet  Google Scholar 

  71. W. Huyer: A size-structured population model with dispersion, J. Math. Anal. Appl. 181 (1994) pp 716–754

    MATH  MathSciNet  Google Scholar 

  72. W. Huyer: Semigroup formulation and approximation of a linear age-dependent population problem with spatial diffusion, Semigroup Forum 49 (1994) pp 99–114

    MATH  MathSciNet  Google Scholar 

  73. M. Iannelli: Mathematical Theory of Age-Structured Population Dynamics (Giardini Editori e Stampatori, Pisa 1994)

    Google Scholar 

  74. M. Iannelli, M. Marcheva, F. A. Milner: Gender-Structured Population Modeling, (Mathematical Methods, Numerics, and Simulations, SIAM, Philadelphia 2005)

    MATH  Google Scholar 

  75. H. Inaba: Mathematical Models for Demography and Epidemics, (University of Tokyo Press, Tokyo 2002)

    Google Scholar 

  76. W. Kermack, A. McKendrick: Contributions to the mathematical theory of epidemics III. Further studies on the problem of endemicity, Proc. Roy. Soc. 141 (1943) pp 94–122

    Google Scholar 

  77. N. Keyfitz: Introduction to the Mathematics of Population, (Addison Wesley, Reading 1968)

    Google Scholar 

  78. K. Kubo, M. Langlais: Periodic solutions for a population dynamics problem with age-dependence and spatial structure, J. Math. Biol. 29 (1991) pp 363–378

    MATH  MathSciNet  Google Scholar 

  79. K. Kunisch, W. Schappacher, G. Webb: Nonlinear age-dependent population dynamics with diffusion, Inter. J. Comput. Math. Appl. 11 (1985) pp 155–173

    MATH  MathSciNet  Google Scholar 

  80. M. Langlais: A nonlinear problem in age-dependent population diffusion, SIAM J. Math. Anal. 16 (1985) pp 510–529

    MATH  MathSciNet  Google Scholar 

  81. M. Langlais: Large time behavior in a nonlinear age-dependent population dynamics problem with spatial diffusion, J. Math. Biol. 26 (1988) pp 319–346

    MATH  MathSciNet  Google Scholar 

  82. M. Langlais, F. A. Milner: Existence and uniqueness of solutions for a diffusion model of host-parasite dynamics, J. Math. Anal. Appl 279 (2003) pp 463–474

    MATH  MathSciNet  Google Scholar 

  83. H. Levine, S. Pamuk, B. Sleeman, M. Nilsen-Hamilton: Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma, Bull. Math. Biol. 63 (2001) pp 801–863

    Google Scholar 

  84. H. Levine, B. Sleeman: Modelling tumor-induced angiogenesis, in Cancer Modelling and Simulation, Ed. L. Preziosi (Chapman and Hall/CRC, Boca Raton, 2003)

    Google Scholar 

  85. A. Lotka: The stability of the normal age-distribution, Proc. Natl. Acad. Sci. USA 8 (1922) pp 339–345

    Google Scholar 

  86. A. Lotka: On an integral equation in population analysis, Ann. Math. Stat. 10 (1939) pp 1–35

    MATH  Google Scholar 

  87. R. MacCamy: A population problem with nonlinear diffusion, J. Diff. Eqs. 39 (21) (1981) pp 52–72

    MATH  MathSciNet  Google Scholar 

  88. P. Magal: Compact attractors for time-periodic age-structured population models, Elect. J. Dif. Eqs. 65 (2001) pp 1–35

    Google Scholar 

  89. P. Magal, H. R. Thieme: Eventual compactness for semiflows generated by nonlinear age-structured models, Comm. Pure Appl. Anal. 3 (2004) pp 695–727

    MATH  MathSciNet  Google Scholar 

  90. P. Marcati: Asymptotic behavior in age dependent population diffusion model, SIAM J. Math. Anal. 12 (1981) pp 904–914

    MATH  MathSciNet  Google Scholar 

  91. R. Martin: Nonlinear Operators and Differential Equations in Banach Spaces, (Wiley-Interscience, New York 1976)

    MATH  Google Scholar 

  92. A. McKendrick: Applications of mathematics to medical problems, Proc. Edin. Math. Soc. 44 (1926) pp 98–130

    Google Scholar 

  93. J. Metz, O. Diekmann: The Dynamics of Physiologically Structured Populations (Springer Lecture Notes in Biomathematics 68, New York 1986)

    MATH  Google Scholar 

  94. R. Nagel: One-Parameter Semigroups of Positive Operators, Ed. R. Nagel (Springer, Berlin Heidelberg New York 1986)

    Google Scholar 

  95. J. Nagy: The ecology and evolutionary biology of cancer: A review of mathematical models of necrosis and tumor cell diversity, Math. Biosci. Eng. 2 (2005) pp 381–418

    MathSciNet  Google Scholar 

  96. A. Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations (Springer Series in Applied Mathematical Sciences, New York 1983)

    MATH  Google Scholar 

  97. J. Pollard: Mathematical Models for the Growth of Human Populations, (Cambridge University Press, Cambridge 1973)

    MATH  Google Scholar 

  98. J. Prüss: Equilibrium solutions of age-specific population dynamics of several species, J. Math. Biol. 11 (1981) pp 65–84

    MATH  MathSciNet  Google Scholar 

  99. J. Prüss: On the qualitative behaviour of populations with age-specific interractions, Comp Math. Appl. 9 (1983) pp 327–339

    MATH  Google Scholar 

  100. J. Prüss: Stability analysis for equilibria in age-specific population dynamics, Nonl. Anal. 7 (1983) pp 1291–1313

    MATH  Google Scholar 

  101. A. Rhandi: Positivity and stability for a population equation with diffusion on L 1, Positivity 2 (1998) pp 101–113

    MATH  MathSciNet  Google Scholar 

  102. A. Rhandi, R. Schnaubelt: Asymptotic behaviour of a non-autonomous population equation with diffusion in L 1, Discr. Cont. Dyn. Sys. 5 (1999) pp 663–683

    MATH  MathSciNet  Google Scholar 

  103. I. Segal: Nonlinear semigroups, Ann. Math. 78 (1963) pp 339–364

    Google Scholar 

  104. F. Sharpe, A. Lotka: A problem in age-distribution, Philos. Mag. 6 (1911) pp 435–438

    Google Scholar 

  105. J. Sherratt, M. Chaplain: A new mathematical model for avascular tumour growth, J. Math. Biol. 43 (2001) pp 291–312

    MATH  MathSciNet  Google Scholar 

  106. J. Sinko, W. Streifer: A new model for age-size structure of a population, Ecology 48 (1967) pp 910–918

    Google Scholar 

  107. B. Sleeman, A. Anderson, M. Chaplain: A mathematical analysis of a model for capillary network formation in the absence of endothelial cell proliferation, Appl. Math. Lett. 12 (1999) pp 121–127

    MATH  MathSciNet  Google Scholar 

  108. J. W.-H So, J. Wu, X. Zou: A reaction−diffusion model for a single species with age structure. I Travelling wavefronts on unbounded domains, Proc. Roy. Soc. 457 (2001) pp 1841–1853

    Google Scholar 

  109. H. R. Thieme: Semiflows generated by Lipschitz perturbations of non-densely defined operators, Dif. Int. Eqs. 3 (1990) pp 1035–1066

    MATH  MathSciNet  Google Scholar 

  110. H. R. Thieme: Analysis of age-structured population models with an additional structure, in Mathematical Population Dynamics, Proceedings of the 2nd International Conference, Rutgers University 1989, Eds. O. Arino, D.E. Axelrod, M. Kimmel (Lecture Notes in Pure and Applied Mathematics 131, 1991) pp 115–126

    Google Scholar 

  111. H. R. Thieme: Quasi-compact semigroups via bounded perturbation, in Advances in Mathematical Population Dynamics: Molecules, Cells and Man, Eds. O. Arino, D. Axelrod, M. Kimmel (World Scientific, Singapore 1997) pp 691–711

    Google Scholar 

  112. H. R. Thieme: Positive perturbation of operator semigroups: Growth bounds, essential compactness, and asynchronous exponential growth, Disc. Cont. Dyn. Sys. 4 (1998) pp 735–764

    MATH  MathSciNet  Google Scholar 

  113. H. Thieme: Balanced exponential growth of operator semigroups, J. Math. Anal. Appl. 223 (1998) pp 30–49

    MATH  MathSciNet  Google Scholar 

  114. H. R. Thieme: Mathematics in Populations Biology, (Princeton University Press, Princeton 2003)

    Google Scholar 

  115. H. R. Thieme, J. I. Vrabie: Relatively compact orbits and compact attractors for a class of nonlinear evolution equations, J. Dyn. Diff. Eqs. 15 (2003) pp 731–750

    MATH  MathSciNet  Google Scholar 

  116. S. Tucker, S. Zimmerman: A nonlinear model of population-dynamics containing an arbitrary number of continuous structure variables, SIAM J. Appl. Math. 48 (1988) pp 549–591

    MATH  MathSciNet  Google Scholar 

  117. H. Von Foerster: Some remarks on changing populations, in The Kinetcs of Cellular Proliferation, Ed. F. Stohlman (Grune and Stratton, New York 1959)

    Google Scholar 

  118. C. Walker: Global well-posedness of a haptotaxis model with spatial and age structure, Differ. Integral Equations Athens 20 (9) (2007) pp 1053–1074

    Google Scholar 

  119. C. Walker, G. Webb: Global existence of classical solutions to a haptotaxis model, SIAM J. Math. Anal. 38 (5) (2007) pp 1694–1713

    MATH  MathSciNet  Google Scholar 

  120. G. Webb: Lan age-dependent epidemic model with spatial diffusion, Arch. Rat. Mech. Anal. 75 (1980) pp 91–102

    MATH  Google Scholar 

  121. G. Webb: Diffusive age-dependent population models and a application to genetics, Math. Biosci. 61 (1982) pp 1–16

    MATH  MathSciNet  Google Scholar 

  122. G. Webb: Theory of Nonlinear Age-Dependent Population Dynamics (Marcel Dekker 89, New York 1985)

    MATH  Google Scholar 

  123. G. Webb: Logistic models of structured population growth, J. Comput. Appl. 12 (1986) pp 319–335

    Article  Google Scholar 

  124. G. Webb: An operator-theoretic formulation of asynchronous exponential growth, Trans. Amer. Math. Soc. 303 (1987) pp 751–763

    MATH  MathSciNet  Google Scholar 

  125. G. Webb: Periodic and chaotic behavior in structured models of cell population dynamics, in Recent Developments in Evolution Equations, Pitman Res. Notes Math. Ser. 324 (1995) pp 40–49

    Google Scholar 

  126. G. Webb: The steady state of a tumor cord cell popultion, J. Evol Eqs. 2 (2002) pp 425–438

    MATH  Google Scholar 

  127. G. Webb: Structured population dynamics, in Mathmatical Modelling of Population Dynamics (Banach Center Publications 63, Institute of Mathematics, Polish Academy of Sciences, Warsaw 2004)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Wiener Integration with Respect to Fractional Brownian Motion. In: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics, vol 1929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75873-0_1

Download citation

Publish with us

Policies and ethics