Advertisement

Logistic Regression as a Computational Tool for Dealing with Intransitivity

  • María Isabel Rodríguez-Galiano
  • Jacinto González-Pachón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

In this paper, we propose a decision-making methodology based on logistic regression to solve a general decision-making problem, considering imprecisions and incoherences in the decision maker’s behaviour.

Keywords

Paired comparisons intransitivities multinomial logistic regression ranking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    May, K.O.: Intransitivity, Utility, and the Aggregation of Preference Patterns. Econometrica 22(1), 1–13 (1954)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Roberts, F.S: What if Utility Functions do Not Exist? Theory and Decision 3, 126–139 (1972)zbMATHCrossRefGoogle Scholar
  3. 3.
    Tversky, A.: Intransitivity of Preferences. Psychological Review 76, 31–48 (1969)CrossRefGoogle Scholar
  4. 4.
    González-Pachón, J., Ríos-Insua, S.: Mixture of Maximal Quasi Orders: A New Approach to Preference Modelling. Theory and Decision 47, 73–88 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    González-Pachón, J., Rodríguez-Galiano, M.I., Romero, C.: Transitive Aproximation to Pairwise Comparison Matrices by using Interval Goal Programming. Journal of the Operational Research Society 54, 532–538 (2003)CrossRefGoogle Scholar
  6. 6.
    Aldrich, J.H., Nelson, F.D.: Linear Probability, Logit, and Probit Models. Sage Publications, Thousand Oaks (1989)Google Scholar
  7. 7.
    Bierlaire, M.: Discrete Choice Models. In: Labbé, M., Laporte, G., Tanczos, K. (eds.) Operations Research and Decision Aid Methodologies in Traffic and Transportation Management. NATO ASI Series, Series F: Computer and Systems Science, vol. 166, Springer, Heidelberg (1998)Google Scholar
  8. 8.
    González-Pachón, J., Romero, C.: A method for obtaining transitive approximations of a binary relation. Annals of Operations Research (to appear, 2007)Google Scholar
  9. 9.
    Roubens, M., Vincke, P.h.: Preference Modelling. Lecture Notes in Economics and Mathematical Systems, vol. 250. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  10. 10.
    Agresti, A.: Categorical Data Analysis. Wiley, Chichester (2002)zbMATHGoogle Scholar
  11. 11.
    Christensen, R.: Log-Linear Models and Logistic Regression, 2nd edn. Springer, New York (1997)zbMATHGoogle Scholar
  12. 12.
    Ryan, T.P.: Modern Regression Methods. Wiley, New York (1997)zbMATHGoogle Scholar
  13. 13.
    Menard, S.: Coefficients of Determination for Multiple Logistic Regression Analysis. The American Statistician 51(1), 17–24 (2000)CrossRefGoogle Scholar
  14. 14.
    Bouyssou, D.: Ranking Methods based on Valued Preferences Relations: A Characterization of the Net Flow Method. European Journal of Operational Research 60, 61–67 (1992)zbMATHCrossRefGoogle Scholar
  15. 15.
    Rodríguez-Galiano, M.I., González-Pachón, J.: Characterization of Certain Orders using their Associated Choice Functions. European Journal of Operational Research 132, 619–627 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • María Isabel Rodríguez-Galiano
    • 1
  • Jacinto González-Pachón
    • 1
  1. 1.Artificial Intelligence Department, School of Computer Science, Universidad Politécnica de Madrid 

Personalised recommendations