Advertisement

Using Temporal Logic for Spatial Reasoning: Temporalized Propositional Neighborhood Logic

  • Antonio Morales
  • Isabel Navarrete
  • Guido Sciavicco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

In this paper we develop a new modal logic for spatial reasoning called Temporalized Propositional Neighborhood Logic, which is the result of the application of a known technique called temporalization to a known temporal logic for spatial reasoning (PNL). We will show that our logic is expressive enough to formalize interesting spatial statements and that it is decidable in NEXPTIME.

Keywords

Modal Logic Temporal Logic Current Region Propositional Variable Topological Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BCWZ02]
    Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence 17(3), 239–251 (2002)zbMATHCrossRefGoogle Scholar
  2. [Ben94]
    Bennett, B.: Spatial reasoning with propositional logics. In: Doyle, J., Sandewall, E., Torasso, P. (eds.) KR 1994: Principles of Knowledge Representation and Reasoning, pp. 51–62. Morgan Kaufmann, San Francisco, California (1994)Google Scholar
  3. [Ben96]
    Bennett, B.: Modal logics for qualitative spatial reasoning. Journal of the Interest Group in Pure and Applied Logic (IGPL) 4(1), 23–45 (1996)zbMATHGoogle Scholar
  4. [BMGS07]
    Bresolin, D., Montanari, A., Goranko, V., Sciavicco, G.: On decidability and expressiveness of propositional neighborhood logics. In: Proc. of the Symposium on Logical Foundations of Computer Science 2007. LNCS, vol. 4514, pp. 84–99. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. [BMS]
    Bresolin, D., Montanari, A., Sala, P.: An optimal tableau-based decision algorithm for propositional neighborhood logic. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. [FG96]
    Finger, M., Gabbay, D.: Combining temporal logic systems. Notre Dame Journal of Formal Logic 37(2), 204–232 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. [GMS03]
    Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood temporal logics. Journal of Universal Computer Science 9(9), 1137–1167 (2003)MathSciNetGoogle Scholar
  8. [LW04]
    Lutz, C., Wolter, F.: Modal logics of topological relations. In: Proc. of Advances in Modal Logics 2004 (2004)Google Scholar
  9. [MNS07]
    Morales, A., Navarrete, I., Sciavicco, G.: Proof methods for spatial propositional neighborhood logic. In: Guesguen, H.W., Ligozat, G. (eds.) Proc. of the IJCAI-2007 Workshop on Spatial and Temporal Reasoning (2007)Google Scholar
  10. [MR99]
    Marx, M., Reynolds, M.: Undecidability of compass logic. Journal of Logic and Computation 9(6), 897–914 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [MS06a]
    Morales, A., Sciavicco, G.: Una comparativa entre el algebra de rectangulos y la logica SpPNL ( in Spanish). In: Proc. of the Conference Campus Multidisciplinar en Perception e Inteligencia (CMPI-2006), pp. 576–587 (2006)Google Scholar
  12. [MS06b]
    Morales, A., Sciavicco, G.: Using time for spatial reasoning: Spatial propositional neighborhood logic. In: Proc. of the 13th International Symposium on Temporal Representation and Reasoning (TIME-2006), pp. 50–57 (2006)Google Scholar
  13. [Nut99]
    Nutt, W.: On the translation of qualitative spatial reasoning problems into modal logics. In: Burgard, W., Christaller, T., Cremers, A.B. (eds.) KI-1999: Advances in Artificial Intelligence. LNCS (LNAI), vol. 1701, pp. 113–124. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. [Ven90]
    Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame Journal of Formal Logic 31(4), 529–547 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Morales
    • 1
  • Isabel Navarrete
    • 1
  • Guido Sciavicco
    • 1
  1. 1.Dept. of Information Engineering and Communications, Faculty of Informatics, University of Murcia, 30100, Espinardo (Murcia)Spain

Personalised recommendations