Advertisement

Temporal Equilibrium Logic: A First Approach

  • Pedro Cabalar
  • Gilberto Pérez Vega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

In this paper we introduce an extension of Equilibrium Logic (a logical characterisation of the Answer Set Semantics for logic programs) consisting in the inclusion of modal temporal operators, as those used in Linear Temporal Logic. As a result, we obtain a very expressive formalism that allows nonmonotonic reasoning for temporal domains. To show an example of its utility, we present a translation of a language for reasoning about actions into this formalism.

Keywords

Logic Program Stable Model Linear Temporal Logic Action Description Nonmonotonic Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth International Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge, MA (1988)Google Scholar
  2. 2.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  3. 3.
    Pearce, D.: A new logical characterisation of stable models and answer sets. In: Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS, vol. 1216, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    WASP: ASP solvers web page, last update (2005), http://dit.unitn.it/~wasp/Solvers/index.html
  5. 5.
    McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence Journal 4, 463–512 (1969)zbMATHGoogle Scholar
  6. 6.
    Kamp, J.A.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California at Los Angeles (1968)Google Scholar
  7. 7.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  8. 8.
    Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 42–56 (1930)Google Scholar
  9. 9.
    Gelfond, M., Lifschitz, V.: Action languages. Linköping Electronic Articles in Computer and Information Science 3(16) (1998)Google Scholar
  10. 10.
    Cabalar, P.: Temporal answer sets. In: Proceedings of the Joint Conference on Declarative Programming (AGP 1999), pp. 351–365. MIT Press, L’Aquila, Italy (1999)Google Scholar
  11. 11.
    Lifschitz, V., Turner, H.: Splitting a logic program. In: International Conference on Logic Programming, pp. 23–37 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Pedro Cabalar
    • 1
  • Gilberto Pérez Vega
    • 1
  1. 1.Dept. Computación, Corunna UniversitySpain

Personalised recommendations