Modelling an Activity in Wireless Sensors Network

  • Jan Nikodem
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)


In this paper we describe the results of modelling an activity in WSN; we concentrate on effects of organising groups of sensors, on relationships between sensors and the effects on their autonomy. Consequently our work are concentrated on developing the formal methods and techniques necessary to model and evaluate situations in the network, processes of decisions making and implementing intelligent behavior while following the general outlines of the network activity. These requirements will entail investigating ways in which intelligent systems evaluate, interact and self-organise, both individually and cooperating with other aerial explorers or interacting with environmental stimulus.


wireless sensors network teleogenic systems holons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, E., Mandiau, R., Kolski, C.: HOMASCOW: A Holonic Multi-Agent System for Cooperative Work. In: DEXA Workshop, pp. 247–253 (2000)Google Scholar
  2. 2.
    Castelfranchi, C.: Founding Agent’s Autonomy on Dependence Theory. In: proceedings of ECAI 2000, Berlin, pp. 353–357 (2000)Google Scholar
  3. 3.
    Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies. IEEE Transactions On Mobile Computing 3(3) (2004)Google Scholar
  4. 4.
    Chaczko, Z., Ahmad, F.: Wireless Sensor Network Based System for Fire Endangered Areas. In: ICITA 2005, Sydney (2005)Google Scholar
  5. 5.
    Crandall, J.W., Goodrich, M.A.: Experiments in adjustable autonomy. In: IEEE International Conference on Systems, Man, and Cybernetics, Tucson, USA, vol. 3, pp. 1624–1629 (2001)Google Scholar
  6. 6.
    Falcone, R., Castelfranchi, C.: The Human in the Loop of a Delegated Agent: the Theory of Adjustable Social Autonomy. IEEE Trans. on Systems, Man and Cybernetics, 406–418 (2001)Google Scholar
  7. 7.
    Ferber, J.: Multi-Agent Systems. In: An Introduction to Distributed Artificial Intelligence, Addison Wesley, Reading (1999)Google Scholar
  8. 8.
    Jaroń, J.: Systemic Prolegomena to Theoretical Cybernetics, Scient. Papers of Inst. of Techn. Cybernetics, Wrocław Techn. Univ., no. 45, Wrocław (1978)Google Scholar
  9. 9.
    Klempous, R., Nikodem, J., Radosz, Ł., Raus, N.: Adaptive Misbehavior Detection in Wireless Sensors Network Based on Local Community Agreement. In: 14th Annual IEEE Int. Conf. and Workshops on the Engineering of Computer-Based Systems, ECBS 2007, Tucson, USA, pp. 153–160 (March 2007)Google Scholar
  10. 10.
    Koestler, A.: The Ghost in the Machine. Hutchinson & Co. (1967)Google Scholar
  11. 11.
    Koestler, A.: Janus. A Summing Up. Hutchinson & Co Ltd, London (1978)Google Scholar
  12. 12.
    Lin Ch, R., Gerla, M.: Adaptive Clustering for Mobile Wireless Networks. IEEE Journal On Selected Areas In Communications 15(7) (1997)Google Scholar
  13. 13.
    Pichler, F.: Modeling Complex Systems by Multi-Agent Holarchies. In: Kopacek, P., Moreno-Diaz, R., Pichler, F. (eds.) EUROCAST 1999. LNCS, vol. 1798, pp. 154–168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Pichler, F.: Holonic Peripheral Systems Components: A General Systems Approach. In: Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 43–49. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Scerri, P., Pynadath, D., Tambe, M.: Towards Adjustable Autonomy for the Real World. Journal of Artificial Intelligence Research 17 (2003)Google Scholar
  16. 16.
    Schillo, M.: Self-organization and adjustable autonomy: Two sides of the same medal? Connection Science 14(4), 345–359 (2003)CrossRefGoogle Scholar
  17. 17.
    Sohrabi, K., Gao, J., Ailawadhi, V., Pottie, G.J.: Protocols for Self-Organization of a Wireless Sensor Network. IEEE Personal Communications (2000)Google Scholar
  18. 18.
    Su P., Feng D.:The Design of an Artificial Immune System, Int. Conf. on Networking. In: Systems and Mobile Communications and Learning Technologies (2006)Google Scholar
  19. 19.
    Vaidya, D., Peng, J., Yang, L., Rozenblit, J.W: A Framework for Sensor Management in Wireless and Heterogeneous Sensor Network. In: ECBS’2005, 12th IEEE International Conference on the Engineering of Computer-Based Systems, Greenbelt, USA, pp. 155–162 (April 4-7, 2005)Google Scholar
  20. 20.
    Veyseh, M., Wei, B., Mir, N.F.: An Information Management Protocol to Control Routing and Clustering in Sensor Networks. Journal of Computing and Information Technology - CIT 13(1), 53–68 (2005)CrossRefGoogle Scholar
  21. 21.
    Veeramachaneni, K., Osadciw, L.: Dynamic Particle Swarm Optimizer for Information Fusion in Non Stationary Sensor Networks. In: IEEE Swarm Intelligence Symposium, Indianapolis, USA (2006)Google Scholar
  22. 22.
    Younis, O., Fahmy, S.: HEED: A Hybrid, Energy-Efficient,Distributed Clustering Approach for Ad Hoc Sensor Networks. IEEE Transactions On Mobile Computing, 3(4) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jan Nikodem
    • 1
  1. 1.The Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology, 11/17 Janiszewskiego Street, 50-372 WrocławPoland

Personalised recommendations