A Prey-Predator Model for Immune Response and Drug Resistance in Tumor Growth

  • G. Albano
  • V. Giorno
  • C. Saturnino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)


In this paper the interaction between cancer and immunological system is analysed. The model is a modification of a one proposed by de Vladar and Gonzales. For our model the stability is analysed. Furthermore, the effect of a therapy schedule with fixed concentration is investigated. Mathematically, the effect of therapy is viewed as a moderating term both for tumor cell growth rate and for T-cells death rate. In conclusion, a systematic computational analysis is associated to the obtained theoretical results.


Prey-predator model Gompertz growth immune surveilance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albano, G., Giorno, V.: A stochastic model in tumor growth. J. Theor. Biol. 242(2), 229–236 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    de Vladar, H.P., Gonzalez, J.A.: Dynamic response of cancer under the influence of immunological activity and therapy. J. Theor. Biol. 227(3), 335–348 (2004)CrossRefGoogle Scholar
  3. 3.
    Dunn, G., Bruce, A., Ikeda, H., Old, L., Schreiber, R.: Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3(11), 991–998Google Scholar
  4. 4.
    Galach, M.: Dynamics of the tumor-immune system competition-the effect of time delay. Int. J. Appl. Math. Comput. Sci. 13(3), 395–406 (2004)MathSciNetGoogle Scholar
  5. 5.
    Kozusko, F., Bajzer, Z.: Combining Gompertzian growth and cell population dynamics. Mathematical Biosciences (2003) 185, 153–167 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Loddo, R., Busonera, B., La Colla, P., Filona, R., Buonerba, M., Saturnino, C.: N,No (4,5-dihydro-1H-imidazol-2-yl)3-aza-1,10-decane-diamine and N,No (4,5-dihydro-1H-imidazol-2-yl)3-aza-1,10-dodecane-diamine antagonize cell proliferation as selective ligands towards the topoisomerase II, J. Pharmacy and Pharmacology (in press) (2006)Google Scholar
  7. 7.
    de Pillis, L.G., Radunskaya, A.: A mathematical model of immune response to tumor invasion. Computational Fluid and Solid Mechanics (2003)Google Scholar
  8. 8.
    Stepanova, N.: Course of the immune reaction during the development of a malignant tumor. Biophysics 24, 917–923 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • G. Albano
    • 1
  • V. Giorno
    • 1
  • C. Saturnino
    • 2
  1. 1.Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte don Melillo, Fisciano (SA)Italy
  2. 2.Dip. di Scienze Farmaceutiche , Università di Salerno, Via Ponte don Melillo, Fisciano (SA)Italy

Personalised recommendations