Random Motion with Gamma-Distributed Alternating Velocities in Biological Modeling

  • Antonio Di Crescenzo
  • Barbara Martinucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)


Motivated by applications in mathematical biology concerning randomly alternating motion of micro-organisms, we analyze a generalized integrated telegraph process. The random times between consecutive velocity reversals are gamma-distributed, and perform an alternating renewal process. We obtain the probability law and the mean of the process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Di Crescenzo, A.: On random motions with velocities alternating at Erlang-distributed random times. Advances in Applied Probability 33, 690–701 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Di Crescenzo, A., Martinucci, B.: On the effect of random alternating perturbations on hazard rates. Scientiae Mathematicae Japonicae 64, 381–394 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Di Crescenzo, A., Pellerey, F.: Stochastic comparison of wear processes characterized by random linear wear rates. In: Mikulin, M., Limnios, N. (eds.) 2nd International Conference on Mathematical Methods in Reliability, Abstracts Book, Bordeaux, vol. 1, pp. 339–342 (2001)Google Scholar
  4. 4.
    Di Crescenzo, A., Pellerey, F.: On Prices’ evolutions based on geometric telegrapher’s process. Applied Stochastic Models in Business and Industry 18(2), 171–184 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Erdmann, U., Ebeling, W., Schimansky-Geier, L., Ordemann, A., Moss, F.: Active Brownian particle and random walk theories of the motions of zooplankton: Application to experiments with swarms of Daphnia. arXiv:q-bio.PE/0404018Google Scholar
  6. 6.
    Foong, S.K.: First-passage time, maximum displacement, and Kac’s solution of the telegrapher equation. Physical Review A 46, 707–710 (2001)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Foong, S.K., Kanno, S.: Properties of the telegrapher’s random process with or without a trap. Stochastic Processes and their Applications 53, 147–173 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Goldstein, S.: On diffusion by discontinuous movements and the telegraph equation. Quarterly Journal of Mechanics and Applied Mathematics 4, 129–156 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hill, N.A., Hader, D.P.: A biased random walk model for the trajectories of swimming micro-organisms. Journal of Theoretical Biology 186, 503–526 (1997)CrossRefGoogle Scholar
  10. 10.
    Hillen, T., Stevens, A.: Hyperbolic models for chemotaxis in 1-D. Nonlinear Analysis: Real World Applications 1, 409–433 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kac, M.: A stochastic model related to the telegrapher’s equation. Rocky Mountain Journal of Mathematics 4, 497–509 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Kolesnik, A.: The equations of Markovian random evolution on the line. Journal of Applied Probability 35, 27–35 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Komin, N., Erdmann, U., Schimansky-Geier, L.: Random walk theory applied to Daphnia Motion. Fluctuation and Noise Letters 4(1), 151–159 (2004)CrossRefGoogle Scholar
  14. 14.
    Lachal, A.: Cyclic random motions in ℝd-space with n directions. ESAIM Probability and Statistics 10, 277–316 (2006)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lutscher, F., Stevens, A.: Emerging Patterns in a Hyperbolic Model for Locally Interacting Cell Systems. Journal of Nonlinear Science 12, 619–640 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lutscher, F.: Modeling alignment and movement of animals and cells. Journal of Mathematical Biology 45, 234–260 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Orsingher, E.: Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff’s laws. Stochastic Processes and their Applications 34, 49–66 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Orsingher, E.: Random motions governed by third-order equations. Advances in Applied Probability 22, 915–928 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Orsingher, E.: Motions with reflecting and absorbing barriers driven by the telegraph equation. Random Operators and Stochastic Equations 3, 9–21 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. Journal of Mathematical Biology 26(3), 263–298 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Stadje, W., Zacks, S.: Telegraph processes with random velocities. Journal of Applied Probability 41, 665–678 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311, 381–410 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Zacks, S.: Generalized integrated telegrapher process and the distribution of related stopping times. Journal of Applied Probability 41, 497–507 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Di Crescenzo
    • 1
  • Barbara Martinucci
    • 1
  1. 1.Dipartimento di Matematica e Informatica, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano (SA)Italy

Personalised recommendations