Advertisement

On Evolutionary Systems

  • Rudolf F. Albrecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4739)

Abstract

Considered are controllable systems of (structured) objects sS, S a non-empty set, to which time instants (time “points”) \(t \in \it T\) of a partial ordered time (T, <) are assigned. Treated are topological concepts, a theory of controllable variables, ordering relations on pow (T,<) induced by <, discrete and continuous processes (s t )\(_{t\in{\it U}\subseteq{\it T}}\), relations of processes, a general theory of algorithms, neighborhoods of processes, process approximations, and controllable evolutionary processes. Care has been taken of causality and time dependencies of physical processes.

Keywords

Pareto Front Ideal Base Neighborhood System Filter Base Topological Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, R.F.: On mathematical systems theory. In: Albrecht, R. (ed.) Systems: Theory and Practice, pp. 33–86. Springer, Vienna-New York (1998)Google Scholar
  2. 2.
    Albrecht, R.F: Topological Interpretation of Fuzzy Sets and Intervals. Fuzzy Sets and Systems 135, 11–20 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gaudiot, J.L., Bic, L. (eds.): Advanced Topics in Data-Flow Computing. Prentice Hall, Englewood Cliffs, N.J. (1991)Google Scholar
  4. 4.
    Herzberger, J.: Einführung in das wissenschaftliche Rechnen. Addison-Wesley-Longman, Redwood City, CA, USA (1997)Google Scholar
  5. 5.
    Jolion, J.M., Rosenfeld, A.: A Pyramid Framework for Early Vision. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  6. 6.
    Klaua, D.: Mengenlehre, Walter de Gruyter Berlin-New York (1979)Google Scholar
  7. 7.
    Kropatsch, W.G.: Properties of Pyramidal Representations. In: Kropatsch, W., Klette, R., Solina, F. (eds.) Theoretical Foundations of Computer Vision, Computing Suppl., vol. 11, pp. 99–111. Springer, Vienna-New York (1996)Google Scholar
  8. 8.
    Kulisch, U.W., Miranker, W.L.: Computer Arithmetic in Theory and Practice. Academic Press Inc, New York (1981)zbMATHGoogle Scholar
  9. 9.
    Roy, B.: Algébre et théorie des graphes. Dunod Paris (1969)Google Scholar
  10. 10.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rudolf F. Albrecht
    • 1
  1. 1.Faculty of Natural Science, University of Innsbruck, Technikerstr. 25, 6020 InnsbruckAustria

Personalised recommendations