Skip to main content

Skin Surface, Dermis, and Wound Healing

  • Chapter
  • First Online:
ALERT • Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

  • More commonly, the skin is exposed to therapeutic radiation incidentally, during treatment of relatively superficial but noncutaneous malignancies such as breast cancer, or head and neck cancer.

  • The skin is a multifunctional organ composed of three layers: the epidermis, dermis, and underlying hypodermis.

  • There are five cell layers in the epidermis: from deep to superficial these are the strata basale, spinosum, granulosum, lucidum, and corneum.

  • The microvasculature in the dermal layer regulates body temperature by dilation and constriction.

  • Acute radiation dermatitis progresses through stages of severity based on accumulation of radiation-induced changes to dermal vascular and appendageal structures, epidermal stem cells, and activation of inflammatory pathways.

  • TGF-β is expressed in irradiated tissue within hours of exposure (Rodemann and Bamberg 1995; Rubin et al. 1992; Rodemann et al. 1991), and has been correlated with late fibrotic changes in several tissue types (Anscher et al. 1998; Anscher et al. 2003), including skin (Kumar et al. 2008).

  • The clinical hallmarks of late radiation dermatitis are fibrosis, atrophy, and telangiectasia.

  • The risk of late necrosis correlated with increasing field size and appeared to be increased when the dose was delivered to greater depth.

  • Retrospective review of concurrent chemoradiotherapy (cyclophosphamide, methotrexate, and 5-fluorouracil) compared to breast radiotherapy alone, the addition of concurrent therapy doubled the incidence of grade 2 or greater dermatitis.

  • Radiation Recall: Radiation recall is a phenomenon first described several decades ago (D’Angio et al. 1959), describing a cutaneous reaction in the area of previous radiation exposure, in response to specific systemic agents.

  • SMT: The role of therapeutic radiation in the induction of nonmelanoma skin cancer has been established in several large retrospective studies.

  • Genetic Syndromes: Patients with AT are prone to severe cutaneous side effects.

  • Comorbid Condition: The presence of active collagen vascular disease (CVD) is often cited as a relative contraindication to radiation treatment, due to concern for severe late fibrosis.

  • Wound Healing and Grafts: Grafts are more prone to breakdown, and tissue flaps more likely to fail, especially when the site of origin also lies within the radiation field.

  • Pharmaceutical treatment of fibrosis has been successful with pentoxifylline and vitamin E.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adelstein DJ, Li Y, Adams GL et al (2003) An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemo radiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol 21(1):92–98

    PubMed  Google Scholar 

  • Ahn PH, Vu HT, Lannin D et al (2005) Sequence of radiotherapy with tamoxifen in conservatively managed breast cancer does not affect local relapse rates. J Clin Oncol 23(1):17–23

    PubMed  CAS  Google Scholar 

  • Anscher MS, Kong FM, Andrews K et al (1998) Plasma transforming growth factor beta 1 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys 41(5):1029–1035

    PubMed  CAS  Google Scholar 

  • Anscher MS, Marks LB, Shafman TD et al (2003) Risk of long-term complications after TFG-beta1-guided very-high-dose thoracic radiotherapy. Int J Radiat Oncol Biol Phys 56(4):988–995

    PubMed  Google Scholar 

  • Arany PR, Flanders KC, DeGraff W, Cook J, Mitchell JB, Roberts AB (2007) Absence of Smad3 confers radioprotection through modulation of ERK-MAPK in primary dermal fibroblasts. J Dermatol Sci 48(1):35–42

    PubMed  CAS  PubMed Central  Google Scholar 

  • Archambeau JO, Richard P, Todd W (1995) Pathophysiology of irradiated skin and breast. Int J Radiat Oncol Biol Phys 31(5):1171–1185

    Google Scholar 

  • Atahan IL, Yildiz F, Ozyar E, Uzal D, Zorlu F (1998) Basal cell carcinomas developing in a case of medulloblastoma associated with Gorlin’s syndrome. Pediatr Hematol Oncol 15(2):187–191

    PubMed  CAS  Google Scholar 

  • Aygenc E, Celikkanat S, Kaymakci M, Aksaray F, Ozdem C (2004) Prophylactic effect of pentoxifylline on radiotherapy complications: a clinical study. Otolaryngol Head Neck Surg 130(3):351–356

    PubMed  Google Scholar 

  • Azria D, Gourgou S, Sozzi WJ et al (2004) Concomitant use of tamoxifen with radiotherapy enhances subcutaneous breast fibrosis in hypersensitive patients. Br J Cancer 91(7):1251–1260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Azria D, Magne N, Zouhair A et al (2005) Radiation recall: a well recognized but neglected phenomenon. Cancer Treat Rev 31(7):555–570

    PubMed  Google Scholar 

  • Baker DG, Krochak RJ (1989) The response of the microvascular system to radiation: a review. Cancer Invest 7(3):287–294

    PubMed  CAS  Google Scholar 

  • Bale AE (2002) Hedgehog signaling and human disease. Annu Rev Genomics Hum Genet 3:47–65

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150(5 Suppl):S109–S120

    PubMed  CAS  Google Scholar 

  • Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA (1994) Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest 93(2):892–899

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bellon JR, Shulman LN, Come SE et al (2004) A prospective study of concurrent cyclophosphamide/methotrexate/5-fluorouracil and reduced-dose radiotherapy in patients with early-stage breast carcinoma. Cancer 100(7):1358–1364

    PubMed  CAS  Google Scholar 

  • Bernstein EF, Salomon GD, Harisiadis L et al (1993a) Collagen gene expression and wound strength in normal and radiation-impaired wounds. A model of radiation-impaired wound healing. J Dermatol Surg Oncol 19(6):564–570

    PubMed  CAS  Google Scholar 

  • Bernstein EF, Sullivan FJ, Mitchell JB, Salomon GD, Glatstein E (1993b) Biology of chronic radiation effect on tissues and wound healing. Clin Plast Surg 20(3):435–453

    PubMed  CAS  Google Scholar 

  • Bostrom A, Sjolin-Forsberg G, Wilking N, Bergh J (1999) Radiation recall–another call with tamoxifen. Acta Oncol 38(7):955–959

    PubMed  CAS  Google Scholar 

  • Bremer M, Klopper K, Yamini P, Dix-Waltes R, Dork T, Karstens JH (2003) Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: no observation of increased radiation-induced acute or late effects. Radiother Oncol 69(2):155–160

    PubMed  CAS  Google Scholar 

  • Burger A, Loffler H, Bamberg M, Rodemann HP (1998) Molecular and cellular basis of radiation fibrosis. Int J Radiat Biol 73(4):401–408

    PubMed  CAS  Google Scholar 

  • Camidge R, Price A (2001) Characterizing the phenomenon of radiation recall dermatitis. Radiother Oncol 59(3):237–245

    PubMed  CAS  Google Scholar 

  • Canney PA, Dean S (1990) Transforming growth factor beta: a promotor of late connective tissue injury following radiotherapy? Br J Radiol 63(752):620–623

    PubMed  CAS  Google Scholar 

  • Carl UM, Feldmeier JJ, Schmitt G, Hartmann KA (2001) Hyperbaric oxygen therapy for late sequelae in women receiving radiation after breast-conserving surgery. Int J Radiat Oncol Biol Phys 49(4):1029–1031

    PubMed  CAS  Google Scholar 

  • Cassady JR, Richter MP, Piro AJ, Jaffe N (1975) Radiation–Adriamycin interactions: preliminary clinical observations. Cancer 36(3):946–949

    PubMed  CAS  Google Scholar 

  • Chen AM, Obedian E, Haffty BG (2001) Breast-conserving therapy in the setting of collagen vascular disease. Cancer J 7(6):480–491

    PubMed  CAS  Google Scholar 

  • Chon BH, Loeffler JS (2002) The effect of nonmalignant systemic disease on tolerance to radiation therapy. Oncologist 7(2):136–143

    PubMed  Google Scholar 

  • Cooper JS, Guo MD, Herskovic A et al (1999) Chemoradiotherapy of locally advanced esophageal cancer: long-term follow-up of a prospective randomized trial (RTOG 85–01). Radiat Ther Oncol Group. JAMA 281(17):1623–1627

    CAS  Google Scholar 

  • D’Angio GJ, Farber S, Maddock CL (1959) Potentiation of x-ray effects by actinomycin D. Radiology 73:175–177

    PubMed  Google Scholar 

  • Davis AM, O’Sullivan B, Turcotte R et al (2005) Late radiation morbidity following randomization to preoperative versus postoperative radiotherapy in extremity soft tissue sarcoma. Radiother Oncol 75(1):48–53

    PubMed  Google Scholar 

  • Delanian S, Lefaix JL (2007) Current management for late normal tissue injury: radiation-induced fibrosis and necrosis. Semin Radiat Oncol 17(2):99–107

    PubMed  Google Scholar 

  • Delanian S, Balla-Mekias S, Lefaix JL (1999) Striking regression of chronic radiotherapy damage in a clinical trial of combined pentoxifylline and tocopherol. J Clin Oncol 17(10):3283–3290

    PubMed  CAS  Google Scholar 

  • Delanian S, Porcher R, Balla-Mekias S, Lefaix JL (2003) Randomized, placebo-controlled trial of combined pentoxifylline and tocopherol for regression of superficial radiation-induced fibrosis. J Clin Oncol 21(13):2545–2550

    PubMed  CAS  Google Scholar 

  • Denham JW, Hauer-Jensen M (2002) The radiotherapeutic injury—a complex ‘wound’. Radiother Oncol 63(2):129–145

    PubMed  Google Scholar 

  • Dorr W, Hendry JH (2001) Consequential late effects in normal tissues. Radiother Oncol 61(3):223–231

    PubMed  CAS  Google Scholar 

  • Doyle JW, Li YQ, Salloum A, FitzGerald TJ, Walton RL (1996) The effects of radiation on neovascularization in a rat model. Plast Reconstr Surg 98(1):129–135

    PubMed  CAS  Google Scholar 

  • Drake DB, Oishi SN (1995) Wound healing considerations in chemotherapy and radiation therapy. Clin Plast Surg 22(1):31–37

    PubMed  CAS  Google Scholar 

  • Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21(1):109–122

    PubMed  CAS  Google Scholar 

  • Epperly MW, Travis EL, Sikora C, Greenberger JS (1999) Manganese [correction of Magnesium] superoxide dismutase (MnSOD) plasmid/liposome pulmonary radioprotective gene therapy: modulation of irradiation-induced mRNA for IL-I, TNF-alpha, and TGF-beta correlates with delay of organizing alveolitis/fibrosis. Biol Blood Marrow Transpl 5(4):204–214

    CAS  Google Scholar 

  • Fajardo LF, Berthrong M (1988) Vascular lesions following radiation. Pathol Annu 23(Pt 1):297–330

    PubMed  Google Scholar 

  • Flanders KC, Sullivan CD, Fujii M et al (2002) Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. Am J Pathol 160(3):1057–1068

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flanders KC, Ho BM, Arany PR et al (2008) Absence of Smad3 induces neutrophil migration after cutaneous irradiation: possible contribution to subsequent radioprotection. Am J Pathol 173(1):68–76

    PubMed  PubMed Central  Google Scholar 

  • Futran ND, Trotti A, Gwede C (1997) Pentoxifylline in the treatment of radiation-related soft tissue injury: preliminary observations. Laryngoscope 107(3):391–395

    PubMed  CAS  Google Scholar 

  • Gorodetsky R, Mou XD, Fisher DR, Taylor JM, Withers HR (1990) Radiation effect in mouse skin: dose fractionation and wound healing. Int J Radiat Oncol Biol Phys 18(5):1077–1081

    PubMed  CAS  Google Scholar 

  • Gothard L, Stanton A, MacLaren J et al (2004) Non-randomized phase II trial of hyperbaric oxygen therapy in patients with chronic arm lymphoedema and tissue fibrosis after radiotherapy for early breast cancer. Radiother Oncol 70(3):217–224

    PubMed  CAS  Google Scholar 

  • Greco FA, Brereton HD, Kent H, Zimbler H, Merrill J, Johnson RE (1976) Adriamycin and enhanced radiation reaction in normal esophagus and skin. Ann Intern Med 85(3):294–298

    PubMed  CAS  Google Scholar 

  • Haddad P, Kalaghchi B, Mouzegar-Hashemi F (2005) Pentoxifylline and vitamin E combination for superficial radiation-induced fibrosis: a phase II clinical trial. Radiother Oncol 77(3):324–326

    PubMed  CAS  Google Scholar 

  • Hageman J, Eggen BJ, Rozema T, Damman K, Kampinga HH, Coppes RP (2005) Radiation and transforming growth factor-beta cooperate in transcriptional activation of the profibrotic plasminogen activator inhibitor-1 gene. Clin Cancer Res 11(16):5956–5964

    PubMed  CAS  Google Scholar 

  • Hahn H, Wojnowski L, Zimmer AM, Hall J, Miller G, Zimmer A (1998) Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 4(5):619–622

    PubMed  CAS  Google Scholar 

  • Hakenjos L, Bamberg M, Rodemann HP (2000) TGF-beta 1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype. Int J Radiat Biol 76(4):503–509

    PubMed  CAS  Google Scholar 

  • Hall EJ, Giaccia AJ (2005) Radiobiology for the Radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Hall and Okunieff. Human radiation injury

    Google Scholar 

  • Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR (1989) Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A 86(24):10104–10107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Herrmann T, Baumann M, Dorr W (2006) Clinical radiation biology. Elsevier, Munich

    Google Scholar 

  • Herskind C, Bentzen SM, Overgaard J, Overgaard M, Bamberg M, Rodemann HP (1998) Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiother Oncol 47(3):263–269

    PubMed  CAS  Google Scholar 

  • Hird AE, Wilson J, Symons S, Sinclair E, Davis M, Chow E (2008) Radiation recall dermatitis: case report and review of the literature. Curr Oncol 15(1):53–62

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holscher T, Bentzen SM, Baumann M (2006) Influence of connective tissue diseases on the expression of radiation side effects: a systematic review. Radiother Oncol 78(2):123–130

    PubMed  Google Scholar 

  • Hoppe BS, Laser B, Kowalski AV et al (2008) Acute skin toxicity following stereotactic body radiation therapy for stage I non-small-cell lung cancer: who’s at risk? Int J Radiat Oncol Biol Phys 72(5):1283–1286

    PubMed  Google Scholar 

  • Iannuzzi CM, Atencio DP, Green S, Stock RG, Rosenstein BS (2002) ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int J Radiat Oncol Biol Phys 52(3):606–613

    PubMed  CAS  Google Scholar 

  • Isaac N, Panzarella T, Lau A et al (2002) Concurrent cyclophosphamide, methotrexate, and 5-fluorouracil chemotherapy and radiotherapy for breast carcinoma: a well tolerated adjuvant regimen. Cancer 95(4):696–703

    PubMed  CAS  Google Scholar 

  • Karagas MR, McDonald JA, Greenberg ER et al (1996) Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. For the skin cancer prevention study group. J Natl Cancer Inst 88(24):1848–1853

    PubMed  CAS  Google Scholar 

  • Khan FM (2003) The physics of radiation therapy, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Khanfir K, Anchisi S (2008) Pemetrexed-associated radiation recall dermatitis. Acta Oncol 47(8):1607–1608

    PubMed  Google Scholar 

  • Kong FM, Pan C, Eisbruch A, Ten Haken RK (2007) Physical models and simpler dosimetric descriptors of radiation late toxicity. Semin Radiat Oncol 17(2):108–120

    PubMed  Google Scholar 

  • Kumar S, Kolozsvary A, Kohl R, Lu M, Brown S, Kim JH (2008) Radiation-induced skin injury in the animal model of scleroderma: implications for post-radiotherapy fibrosis. Radiat Oncol 3:40

    PubMed  PubMed Central  Google Scholar 

  • Lara PC, Russell NS, Smolders IJ, Bartelink H, Begg AC, Coco-Martin JM (1996) Radiation-induced differentiation of human skin fibroblasts: relationship with cell survival and collagen production. Int J Radiat Biol 70(6):683–692

    PubMed  CAS  Google Scholar 

  • Lichter MD, Karagas MR, Mott LA, Spencer SK, Stukel TA, Greenberg ER (2000) Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. The New Hampshire skin cancer study group. Arch Dermatol 136(8):1007–1011

    PubMed  CAS  Google Scholar 

  • Lin A, Bu-Isa E, Griffith KA, Ben-Josef E (2008) Toxicity of radiotherapy in patients with collagen vascular disease. Cancer 113(3):648–653

    PubMed  Google Scholar 

  • Livi L, Saieva C, Borghesi S et al (2008) Concurrent cyclophosphamide, methotrexate, and 5-fluorouracil chemotherapy and radiotherapy for early breast carcinoma. Int J Radiat Oncol Biol Phys 71(3):705–709

    PubMed  CAS  Google Scholar 

  • Locke J, Karimpour S, Young G, Lockett MA, Perez CA (2001) Radiotherapy for epithelial skin cancer. Int J Radiat Oncol Biol Phys 51(3):748–755

    PubMed  CAS  Google Scholar 

  • Magnusson M, Hoglund P, Johansson K et al (2009) Pentoxifylline and vitamin E treatment for prevention of radiation-induced side-effects in women with breast cancer: A phase two, double-blind, placebo-controlled randomised clinical trial (Ptx-5). Eur J Cancer 45(14):2488–2495

    PubMed  CAS  Google Scholar 

  • Malkinson FD, Keane JT (1981) Radiobiology of the skin: review of some effects on epidermis and hair. J Invest Dermatol 77(1):133–138

    PubMed  CAS  Google Scholar 

  • Martin M, Lefaix J, Delanian S (2000) TGF-beta 1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys 47(2):277–290

    PubMed  CAS  Google Scholar 

  • Mayer M (1990) Biochemical and biological aspects of the plasminogen activation system. Clin Biochem 23(3):197–211

    PubMed  CAS  Google Scholar 

  • Milano MT, Constine LS, Okunieff P (2007) Normal tissue tolerance dose metrics for radiation therapy of major organs. Semin Radiat Oncol 17(2):131–140

    PubMed  Google Scholar 

  • Morris MM, Powell SN (1997) Irradiation in the setting of collagen vascular disease: acute and late complications. J Clin Oncol 15(7):2728–2735

    PubMed  CAS  Google Scholar 

  • Okunieff P, Augustine E, Hicks JE et al (2004) Pentoxifylline in the treatment of radiation-induced fibrosis. J Clin Oncol 22(11):2207–2213

    PubMed  CAS  Google Scholar 

  • Okunieff P, Xu J, Hu D et al (2006) Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int J Radiat Oncol Biol Phys 65(3):890–898

    PubMed  CAS  Google Scholar 

  • O’Malley S, Weitman D, Olding M, Sekhar L (1997) Multiple neoplasms following craniospinal irradiation for medulloblastoma in a patient with nevoid basal cell carcinoma syndrome. Case report. J Neurosurg 86(2):286–288

    PubMed  Google Scholar 

  • Ozturk B, Egehan I, Atavci S, Kitapci M (2004) Pentoxifylline in prevention of radiation-induced lung toxicity in patients with breast and lung cancer: a double-blind randomized trial. Int J Radiat Oncol Biol Phys 58(1):213–219

    PubMed  CAS  Google Scholar 

  • Parry BR (1992) Radiation recall induced by tamoxifen. Lancet 340(8810):49

    PubMed  CAS  Google Scholar 

  • Phan C, Mindrum M, Silverman C, Paris K, Spanos W (2003) Matched-control retrospective study of the acute and late complications in patients with collagen vascular diseases treated with radiation therapy. Cancer J 9(6):461–466

    PubMed  Google Scholar 

  • Rodemann HP, Bamberg M (1995) Cellular basis of radiation-induced fibrosis. Radiother Oncol 35(2):83–90

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Blaese MA (2007) Responses of normal cells to ionizing radiation. Semin Radiat Oncol 17(2):81–88

    PubMed  Google Scholar 

  • Rodemann HP, Peterson HP, Schwenke K, von Wangenheim KH (1991) Terminal differentiation of human fibroblasts is induced by radiation. Scanning Microsc 5(4):1135–1142

    PubMed  CAS  Google Scholar 

  • Rodemann HP, Binder A, Burger A, Guven N, Loffler H, Bamberg M (1996) The underlying cellular mechanism of fibrosis. Kidney Int Suppl 54:S32–S36

    PubMed  CAS  Google Scholar 

  • Rubin P, Casarett GW (1968) Clinical radiation pathology, vol I. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Rubin P, Hansen JT (2008) TNM staging atlas, 1st edn, vol 52. Lippincott Williams & Wilkins, Philadelphia, pp 449–450

    Google Scholar 

  • Rubin P, Casarett G, Grise JW (1960) The vascular pathophysiologoy of an irradiated graft. Am J Roentgenol Radium Ther Nucl Med 83:1096–1104

    Google Scholar 

  • Rubin P, Finkelstein J, Shapiro D (1992) Molecular biology mechanisms in the radiation induction of pulmonary injury syndromes: interrelationship between the alveolar macrophage and the septal fibroblast. Int J Radiat Oncol Biol Phys 24(1):93–101

    PubMed  CAS  Google Scholar 

  • Saif MW, Ramos J, Knisely J (2008) Radiation recall phenomenon secondary to bevacizumab in a patient with pancreatic cancer. JOP 9(6):744–747

    PubMed  Google Scholar 

  • Schultze-Mosgau S, Wehrhan F, Grabenbauer G et al (2002) Transforming growth factor beta1 and beta2 (TGFbeta2/TGFbeta2) profile changes in previously irradiated free flap beds. Head Neck 24(1):33–41

    PubMed  Google Scholar 

  • Schwartz BM, Khuntia D, Kennedy AW, Markman M (2003) Gemcitabine-induced radiation recall dermatitis following whole pelvic radiation therapy. Gynecol Oncol 91(2):421–422

    PubMed  Google Scholar 

  • Selvaraj RN, Bhatnagar A, Beriwal S et al (2007) Breast skin doses from brachytherapy using MammoSite HDR, intensity modulated radiation therapy, and tangential fields techniques. Technol Cancer Res Treat 6(1):17–22

    PubMed  Google Scholar 

  • Shenkier T, Gelmon K (1994) Paclitaxel and radiation-recall dermatitis. J Clin Oncol 12(2):439

    PubMed  CAS  Google Scholar 

  • Sieber VK, Wilkinson J, Aluri GR, Bywaters T (1993) Quantification of radiation-induced epilation in the pig: a biological indicator of radiation dose to the skin. Int J Radiat Biol 63(3):355–360

    PubMed  CAS  Google Scholar 

  • Springfield DS (1993) Surgical wound healing. Cancer Treat Res 67:81–98

    PubMed  CAS  Google Scholar 

  • Strandquist M (1944) A study of the cumulative effects of fractionated X-ray treatment based on the experience gained at the radiumhemmet with the treatment of 280 cases of carcinoma of the skin and lip. Acta Radiol 55(Suppl):300–304

    Google Scholar 

  • Stelzer KJ, Griffin TW, Koh WJ (1993) Radiation recall skin toxicity with bleomycin in a patient with Kaposi sarcoma related to acquired immune deficiency syndrome. Cancer 71(4):1322–1325

    PubMed  CAS  Google Scholar 

  • Taylor ME, Perez CA, Halverson KJ et al (1995) Factors influencing cosmetic results after conservation therapy for breast cancer. Int J Radiat Oncol Biol Phys 31(4):753–764

    PubMed  CAS  Google Scholar 

  • Thompson DE, Mabuchi K, Ron E et al (1994) Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958–1987. Radiat Res 137(2 Suppl):S17–S67

    PubMed  CAS  Google Scholar 

  • Tibbs MK (1997) Wound healing following radiation therapy: a review. Radiother Oncol 42(2):99–106

    PubMed  CAS  Google Scholar 

  • Toledano A, Garaud P, Serin D et al (2006) Concurrent administration of adjuvant chemotherapy and radiotherapy after breast-conserving surgery enhances late toxicities: long-term results of the ARCOSEIN multicenter randomized study. Int J Radiat Oncol Biol Phys 65(2):324–332

    PubMed  CAS  Google Scholar 

  • Vozenin-Brotons MC, Gault N, Sivan V et al (1999) Histopathological and cellular studies of a case of cutaneous radiation syndrome after accidental chronic exposure to a cesium source. Radiat Res 152(3):332–337

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Feng QF, Rabbani ZN, Anscher MS, Samulski TV, Brizel DM (2002) Radioprotection of lungs by amifostine is associated with reduction in profibrogenic cytokine activity. Radiat Res 157(6):656–660

    PubMed  CAS  Google Scholar 

  • Yeo W, Leung SF, Johnson PJ (1997) Radiation-recall dermatitis with docetaxel: establishment of a requisite radiation threshold. Eur J Cancer 33(4):698–699

    PubMed  CAS  Google Scholar 

  • Zhang S (1999) An atlas of histology. Springer, New York

    Google Scholar 

  • Zhao W, Spitz DR, Oberley LW, Robbins ME (2001) Redox modulation of the pro-fibrogenic mediator plasminogen activator inhibitor-1 following ionizing radiation. Cancer Res 61(14):5537–5543

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn D. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Decker, R.H., Strom, E.A., Wilson, L.D. (2014). Skin Surface, Dermis, and Wound Healing. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT • Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75863-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75863-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75862-4

  • Online ISBN: 978-3-540-75863-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics