Skip to main content

Spinal Cord and Peripheral Nervous System

  • Chapter
  • First Online:
ALERT • Adverse Late Effects of Cancer Treatment

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbatucci JS, DeLozier T, Quint R et al (1978) Radiation myelopathy of the cervical spinal cord. Time, dose, and volume factors. Int J Radiat Oncol Biol Phys 4:239–248

    PubMed  CAS  Google Scholar 

  • Abramson N, Cavanaugh PJ (1973) Short-course radiation therapy in carcinoma of the lung. Radiology 108:685–687

    PubMed  CAS  Google Scholar 

  • Abrey LE, DeAngelis LM, Yahalom J (1998) Long-term survival in primary CNS lymphoma. J Clin Oncol 16:859–863

    PubMed  CAS  Google Scholar 

  • Ahlbom HE (1941) The results of radiotherapy of hypopharyngeal cancer at the radium-Hemmet, Stockholm, 1930 to 1939. Acta Radiol 22:155–171

    Google Scholar 

  • Ahmad A, Barrington S, Maisey M et al (1999) Use of positron emission tomography in the evaluation of brachial plexopathy in breast cancer patients. Br J Cancer 79:478–482

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ang KK, Jiang GL, Feng Y et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020

    PubMed  CAS  Google Scholar 

  • Ang KK, Price RE, Stephens LC et al (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464

    PubMed  CAS  Google Scholar 

  • Ang KK, van der Kogel AJ, van der Schueren E et al (1983) The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance. Int J Radiat Oncol Biol Phys 9:1487–1491

    PubMed  CAS  Google Scholar 

  • Atkins HL, Tretter P (1966) Time-dose considerations in radiation myelopathy. Acta Radiol Ther Phys Biol 5:79–94

    PubMed  CAS  Google Scholar 

  • Bajrovic A, Rades D, Fehlauer F, Tribius S, Hoeller U, Rudat V et al (2004) Is there a life-long risk of brachial plexopathy after radiotherapy of supraclavicular lymph nodes in breast cancer patients? Radiother Oncol 71:297–301

    PubMed  Google Scholar 

  • Barr LC, Kissin MW (1987) Radiation-induced brachial plexus neuropathy following breast conservation and radical radiotherapy. Br J Surg 74(9):855–856

    Google Scholar 

  • Basso-Ricci S, della Costa C, Viganotti G, Ventafridda V, Zanolla R (1980) Report on 42 cases of post-irradiation lesions of the brachial plexus and their treatment. Tumori 66:117–122

    Google Scholar 

  • Bauman GS, Sneed PK, Wara WM et al (1996) Reirradiation of primary CNS tumors. Int J Radiat Oncol Biol Phys 36:433–441

    PubMed  CAS  Google Scholar 

  • Benzil DL, Saboori M, Mogilner AY et al (2004) Safety and efficacy of stereotactic radiosurgery for tumors of the spine. J Neurosurg 101(Suppl 3):413–418

    PubMed  Google Scholar 

  • Bernaldez-Rios R, Willasis-Keever MA, Beltran-Adame G et al (1998) Neurological and psychological sequelae in children with acute lymphoblastic leukemia who had received radiotherapy and intrathecal methotrexate. Gac Med Mex 134:153–159

    PubMed  CAS  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211

    PubMed  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2003) Unexpected changes of rat cervical spinal cord tolerant caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281

    PubMed  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61:543–551

    PubMed  Google Scholar 

  • Bleyer WA (1981) Neurologic sequelae of methotrexate and ionizing radiation: a new classification. Cancer Treat Rep 65(suppl)1:89–98

    Google Scholar 

  • Bloss JD, DiSaia PJ, Mannel RS et al (1991) Radiation myelitis: a complication of concurrent cisplatin and 5-fluorouracil chemotherapy with extended field radiotherapy for carcinoma of the uterine cervix. Gynecol Oncol 43:305–308

    PubMed  CAS  Google Scholar 

  • Boden G (1948) Radiation myelitis of the cervical spinal cord. Br J Radiol 21:464–469

    PubMed  CAS  Google Scholar 

  • Braggs DG, Rubin P, Youker JE (2002) Oncologic Imaging (2nd ed). Philadelphia: W B Saunders

    Google Scholar 

  • Cancer Therapy Evaluation Program, Common Terminology Criteria for Adverse Events (2008) Version 3.0, DCTD, NCI, NIH, DHHS, March 31, 2003. http://ctep.cancer.gov. Accessed 31 Aug 2008

  • Cavanagh JB (1968) Effects of X-irradiation on the proliferation of cells in peripheral nerve during wallerian degeneration in rat. Br J Radiol 41:275–281

    PubMed  CAS  Google Scholar 

  • Chamroonrat W, Posteraro A, El-Haddad G, Zhuang H, Alavi A (2005) Radiation myelopathy visualized as increased FDG uptake on positron emission tomography. Clin Nucl Med 30:560

    PubMed  Google Scholar 

  • Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160

    PubMed  Google Scholar 

  • Chao MW, Wirth A, Ryan G et al (1998) Radiation myelopathy following transplantation and radiotherapy for non-Hodgkin’s lymphoma. Int J Radiat Oncol Biol Phys 41:1057–1061

    PubMed  CAS  Google Scholar 

  • Choi NCH, Grillo HC, Gardiello M et al (1980) Basis for new strategies in postoperative radiotherapy of bronchogenic carcinoma. Int J Radiat Oncol Biol Phys 6:31–35

    PubMed  CAS  Google Scholar 

  • Coderre JA, Morris GM, Micca PL et al (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503

    PubMed  CAS  Google Scholar 

  • Cox DR, Snell EJ (1989) Analysis of binary data. Chapman and Hall, London

    Google Scholar 

  • Corbo M, Balmaceda C (2001) Peripheral neuropathy in cancer patients. Cancer Invest 19:369–382

    PubMed  CAS  Google Scholar 

  • de Vrind HH, van Dam WM, Wondergem J, Haveman J (1993) Latent X-ray damage in the rat sciatic nerve results in delay in functional recovery after a heat treatment. Int J Radiat Biol 63:83–89

    PubMed  Google Scholar 

  • Delouche G, Bachelot F, Premont M, Kurtz JM (1987) Conservation treatment of early breast cancer: long term results and complications. Int J Radiat Oncol Biol Phys 13:29–34

    Google Scholar 

  • Dische S, Warburton MF, Sanders MI (1988) Radiation myelitis and survival in the radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 15:75–81

    PubMed  CAS  Google Scholar 

  • Dynes JB (1960) Radiation myelopathy. Trans Am Neurol Assoc 85:51–55

    PubMed  CAS  Google Scholar 

  • Eichhorn HJ, Lessel A, Rotte KH (1972) Einfuss verschiedener Bestrahlungsrhythmen auf Tumor-und Normalgewebe in vivo. Strahlentheraphie 146:614–629

    Google Scholar 

  • Evans A, Bleyer A, Kaplan R et al (1981) Central nervous system workshop. Cancer Clin Trials 4(suppl):31–35

    PubMed  Google Scholar 

  • Falah M, Schiff D, Burns TM (2005) Neuromuscular complications of cancer diagnosis and treatment. J Support Oncol 3:271–282

    PubMed  Google Scholar 

  • Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  • Fitzgerald RH, Marks RD, Wallace KM (1982) Chronic radiation myelitis. Radiology 144:609–612

    PubMed  Google Scholar 

  • Fowble BL, Solin LJ, Schultz DJ, Goodman RL (1991) Ten-year results of conservative surgery and irradiation for stage I and II breast cancer. Int J Radiat Oncol Biol Phys 21:269–277

    PubMed  CAS  Google Scholar 

  • Fowler JF, Bentzen SM, Bond SJ, Ang KK, van der Kogel AJ, van den Bogaert W, van der Schueren E (2000) Clinical radiation doses for spinal cord: the 1998 international questionnaire. Radiother Oncol 55:295–300

    PubMed  CAS  Google Scholar 

  • Friedman DL, Constine LS (2005) Late effects of cancer treatment. In: Halperin EC, Constine LS, Tarbell NJ, Kun LE (eds) Pediatric radiation oncology. Lippincott, Williams & Wilkins, Philadelphia

    Google Scholar 

  • Gałecki J, Hicer-Grzenkowicz J, Grudzień-Kowalska M, Michalska T, Załucki W (2006) Radiation-induced brachial plexopathy and hypofractionated regimens in adjuvant irradiation of patients with breast cancer—a review. Acta Oncol 45:280–284

    PubMed  Google Scholar 

  • Gerszten PC, Burton SA, Welch WC et al (2005) Single-fraction radiosurgery for the treatment of spinal breast metastases. Cancer 104:2244–2254

    PubMed  Google Scholar 

  • Gibbs IC, Kamnerdsupaphon P, Ryu MR et al (2007) Image-guided robotic radiosurgery for spinal metastases. Radiother Oncol 82:185–190

    PubMed  Google Scholar 

  • Gibbs IC, Patil I, Gerszten PC et al (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurgery 64(2 Suppl):A67–A72

    PubMed  Google Scholar 

  • Giese WL, Kinsella TJ (1991) Radiation injury to peripheral nerves. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation injury to the nervous system. Raven Press, Ltd., New York, pp 383–403

    Google Scholar 

  • Gillette EL, Mahler PA, Powers BE, Gillette SM, Vujaskovic Z (1995) Late radiation injury to muscle and peripheral nerves. Int J Radiat Oncol Biol Phys 31:1309–1318

    PubMed  CAS  Google Scholar 

  • Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr (1994) Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 44:2020–2027

    PubMed  CAS  Google Scholar 

  • Glanzmann C, Aberle HG, Horst W (1976) The risk of chronic progressive radiation myelopathy. Strahlentherapie 152:363–372

    PubMed  CAS  Google Scholar 

  • Goetz C (2003) Textbook of clinical neurology, 2nd edn. Saunders, Chicago

    Google Scholar 

  • Greenfield MM, Stark FM (1948) Post-irradiation neuropathy. Am J Roentgenol 60:617–622

    CAS  Google Scholar 

  • Grégoire V, Ruifrok AC, Price RE et al (1995) Effect of intra-peritoneal fludarabine on rat spinal cord tolerance to fractionated irradiation. Radiother Oncol 36:50–55

    PubMed  Google Scholar 

  • Grossman RI, Yousem DM (2003) Neuroradiology. Elsevier, Philadelphia

    Google Scholar 

  • Grosu AL, Andratschke N, Nieder C et al (2002) Retreatment of the spinal cord with palliative radiotherapy. Int J Radiat Oncol Biol Phys 52:1288–1292

    PubMed  Google Scholar 

  • Guthrie RT, Ptacek JJ, Hjass AC (1973) Comparative analysis of two regimens of split course radiation in carcinoma of the lung. Am J Roentgenol 117:605–608

    CAS  Google Scholar 

  • Gwak H-S, Yoo H-J, Youn S-M et al (2005) Hypofractionated stereotactic radiotherapy for skull base and upper cervical chordoma and chondrosarcoma: preliminary results. Stereotact Funct Neurosurg 83:233–243

    PubMed  Google Scholar 

  • Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Wiliiams & Wilkins, Philadephi, PA, USA

    Google Scholar 

  • Hatlevoll R, Host H, Kaalhus O (1983) Myelopathy following radiotherapy of bronchial carcinoma with large single fractions: a retrospective study. Int J Radiat Oncol Biol Phys 9:41–44

    PubMed  CAS  Google Scholar 

  • Hazra TA, Chandrasekaran MS, Colman M et al (1974) Survival in carcinoma of the lung after a split course of radiotherapy. Br J Radiol 47:464–466

    PubMed  CAS  Google Scholar 

  • Jackson MA, Ball DL (1987) Palliative retreatment of locally recurrent lung cancer after radical radiotherapy. Med J Aust 147:391–394

    PubMed  CAS  Google Scholar 

  • Janzen AH, Warren S (1942) Effect of roentgen rays on the peripheral nerve of the rat. Radiology 38:333–337

    Google Scholar 

  • Jeremic BJ, Djuric L, Mijatovic L (1991) Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater. Cancer 68:2138–2141

    PubMed  CAS  Google Scholar 

  • Johansson S, Svensson H, Denekamp J (2000) Timescale of evolution of late radiation injury after postoperative radiotherapy of breast cancer patients. Int J Radiat Oncol Biol Phys 48:745–750

    PubMed  CAS  Google Scholar 

  • Johnstone PA, DeLuca AM, Bacher JD, Hampshire VA, Terrill RE, Anderson WJ, Kinsella TJ, Sindelar WF (1995) Clinical toxicity of peripheral nerve to intraoperative radiotherapy in a canine model. Int J Radiat Oncol Biol Phys 32:1031–1034

    PubMed  CAS  Google Scholar 

  • Kagan AR (1993) Nervous system toxicity. In: Madhu JJ, Flam MS, Legha SS et al (eds) Chemoradiation: an integrated approach to cancer treatment. Lea & Febiger, Philadelphia, p 582

    Google Scholar 

  • Kinsella TJ, DeLuca AM, Barnes M, Anderson W, Terrill R, Sindelar WF (1991) Threshold dose for peripheral neuropathy following intraoperative radiotherapy (IORT) in a large animal model. Int J Radiat Oncol Biol Phys 20:697–701

    PubMed  CAS  Google Scholar 

  • Kinsella TJ, Sindelar WF, DeLuca AM, Pexeshkpour G, Smith R, Maher M, Terrill R, Miller R, Mixon A, Harwell JF, Rosenberg SA, Glatstein E (1985) Tolerance of peripheral nerve to intraoperative radiotherapy (IORT): clinical and experimental studies. Int J Radiat Oncol Biol Phys 11:1579–1585

    PubMed  CAS  Google Scholar 

  • Kirkpatrick JP, Meyer JJ, Marks LB (2008) The L-Q model is inappropriate to model high-dose per fraction effects. Semin Radiat Oncol 18:240–243

    PubMed  Google Scholar 

  • Klimo P Jr, Thompson CJ, Kestle JR et al (2005) A meta-analysis of surgery versus conventional radiotherapy for the treatment of metastatic spinal epidural disease. Neuro Oncol 7:64–76

    PubMed  PubMed Central  Google Scholar 

  • Knowles JF (1983) The radiosensitivity of the guinea-pig spinal cord to X-rays: the effect of retreatment at one year and the effect of age at the time of irradiation. Int J Radiat Biol Relat Stud Phys Chem Med 44:433–442

    PubMed  CAS  Google Scholar 

  • Kramer S (1972) Radiation effect and tolerance of the central nervous system. Front Radiat Ther Oncol 6:332–345

    Google Scholar 

  • Kubo T, Sugita T, Shimose S, Matsuo T, Hirao K, Kimura H, Kenjo M, Ochi M (2005) Nerve tolerance to high-dose-rate brachytherapy in patients with soft tissue sarcoma: a retrospective study. BMC Cancer 5:79. doi:10.1186/1471-2407-5-79

    PubMed  PubMed Central  Google Scholar 

  • Kuo JV, Cabebe E, Al-Ghazi M et al (2002) Intensity-modulated radiation therapy for the spine at the University of California, Irvine. Med Dosim 27:137–145

    PubMed  Google Scholar 

  • Langendijk JA, Kasperts N, Leemans CR et al (2006) A phase II study of primary reirradiation in squamous cell carcinoma of head and neck. Radiother Oncol 78:306–312

    PubMed  Google Scholar 

  • LeCouteur RA, Gillette EL, Powers BE, Child G, McChesney SL, Ingram JT (1989) Peripheral neuropathies following experimental intraoperative radiation therapy (IORT). Int J Radiat Oncol Biol Phys 17:583–590

    PubMed  CAS  Google Scholar 

  • Lederman RJ, Wilbourn AJ (1984) Brachial plexopathy: recurrent cancer or radiation? Neurology 3:1331–1335

    Google Scholar 

  • Lee YY, Nauert C, Glass JP (1986) Treatment-related white matter changes in cancer patients. Cancer 57:1473–1482

    PubMed  CAS  Google Scholar 

  • Livsey JE, Magee B, Stewart AL, Swindell R (2000) Axillary recurrence following conservative surgery and radiotherapy in early breast cancer. Clin Oncol 12:309–314

    CAS  Google Scholar 

  • Macbeth FR, Bolger JJ, Hopwood P et al (1996a) Randomized trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable non-small cell lung cancer and good performance status. Medical research council lung cancer working party. Clin Oncol (R Coll Radiol) 8:167–175

    CAS  Google Scholar 

  • Macbeth FR, Wheldon TE, Girling DJ et al (1996b) Radiation myelopathy: estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. The medical research council lung cancer working party. Clin Oncol (R Coll Radiol) 8:176–181

    CAS  Google Scholar 

  • Madden FJF, English JSC, Moore AK et al (1979) Split course radiation in inoperable carcinoma of the bronchus. Eur J Cancer 15:1175–1177

    PubMed  CAS  Google Scholar 

  • Magrini SM, Biti GP, de Scisciolo G et al (1990) Neurological damage in patients irradiated twice on the spinal cord: a morphologic and electrophysiological study. Radiother Oncol 17:209–218

    PubMed  CAS  Google Scholar 

  • Marcus RB Jr, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys 93:3–8

    Google Scholar 

  • McCunniff AJ, Lliang MJ (1989) Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys 16:675–678

    PubMed  CAS  Google Scholar 

  • Moore IM (1995) Central nervous system toxicity of cancer therapy in children. J Pediatr Oncol Nurs 12:203–210

    PubMed  CAS  Google Scholar 

  • Mullins GM, O’Sullivan SS, Neligan A, Daly S, Galvin RJ, Sweeney BJ, McNamara B (2007) Non-traumatic brachial plexopathies, clinical, radiological and neurophysiological findings from a tertiary centre. Clin Neurol Neurosurg 109:661–666

    PubMed  CAS  Google Scholar 

  • Nelson JW, Yoo DS, Wang Z, et al (2009) Stereotactic body radiotherapy for lesions of the spine and paraspinal regions. Int J Radiat Oncol Biol Phys 73:1369–1375

    Google Scholar 

  • Nieder C, Grosu AL, Andratschke NH et al (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61:851–855

    PubMed  Google Scholar 

  • Nieder C, Grosu AL, Andratschke NH et al (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66:1446–1449

    PubMed  Google Scholar 

  • Notter G, Hallberg O, Vikterlof KJ (1970) Strahlenschaden am plexus brachialis bei patienten mit mammakarizinom. Strahlentherapie 139:538–543

    PubMed  CAS  Google Scholar 

  • Olsen NK, Pfeiffer P, Johannsen L, Schroder H, Rose C (1993) Radiation-induced brachial plexopathy: neurological followup in 161 recurrence free breast cancer patients. Int J Radiat Oncol Biol Phys 26:43–49

    Google Scholar 

  • Okada S, Okeda R. (2001) Pathology of radiation myelopathy. Neuropathology 21:247–265

    Google Scholar 

  • Oudin P, Barthélemy T, Darier J (1897) Uber veranderungen an der haut end den eigweiden nac durchleuchteung mit x-strahlen. Monash Prokt Derm 25:417–445

    Google Scholar 

  • Philippens ME, Pop LA, Visser AG et al (2007) Dose-volume effects in rat thoracolumbar spinal cord: the effects of nonuniform dose distribution. Int J Radiat Oncol Biol Phys 69:204–213

    PubMed  Google Scholar 

  • Pierce SM, Recht A, Lingos TI, Abner A, Vicini F, Silver B et al (1992) Long-term radiation complication following conservative surgery (CS) and radiation therapy (RT) in patients with early stage breast cancer. Int J Radiat Oncol Biol Phys 23:915–923

    PubMed  CAS  Google Scholar 

  • Planner AC, Donaghy M, Moore NR (2006) Causes of lumbosacral plexopathy. Clin Radiol 61(12):987–995

    PubMed  CAS  Google Scholar 

  • Powell S, Cooke J, Parsons C (1990) Radiation-induced brachial plexus injury: follow-up of two different fractionation schedules. Radiother Oncol 18:213–220

    PubMed  CAS  Google Scholar 

  • Qin D, Ma J, Xiao J et al (1997) Effect of brain irradiation on blood-CSF barrier permeability of chemotherapeutic agents. Am J Clin Oncol 20:263–265

    PubMed  CAS  Google Scholar 

  • Rades D, Stalpers LJA, Veninga T et al (2005) Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol 23:3366–3375

    PubMed  Google Scholar 

  • Remsen LG, McCormik CI, Sexton G et al (1997) Long-term toxicity and neuropathology associated with the sequencing of cranial irradiation and enhanced chemotherapy delivery. Neurosurgery 40:1034–1040

    PubMed  CAS  Google Scholar 

  • Rubin P, Gash DM, Hansen JT et al (1994) disruption of the blood-brain barrier as the primary effect of CNS irradiation. Radiother Oncol 31:51–60

    PubMed  CAS  Google Scholar 

  • Rubin P, Constine LS, Williams JP (1997) Late effects of cancer treatment: radiation and drug toxicity. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, 3rd ed. Lippincott-Raven, Philadelphia, pp 155–211

    Google Scholar 

  • Ruckdeschel JC, Baxter DH, McKneally MF et al (1979) Sequential radiotherapy and adriamycin in the management of bronchogenic carcinoma: the question of additive toxicity. Int J Radiat Oncol Biol Phys 5:1323–1328

    PubMed  CAS  Google Scholar 

  • Ruifrok AC, Kleiboer BJ, van der Kogel AJ (1992a) Radiation tolerance and fractionation sensitivity of the developing rat cervical spinal cord. Int J Radiat Oncol Biol Phys 24:505–510

    PubMed  CAS  Google Scholar 

  • Ruifrok AC, Kleiboer BJ, van der Kogel AJ (1992b) Radiation tolerance of the immature rat spinal cord. Radiother Oncol 23:249–256

    PubMed  CAS  Google Scholar 

  • Ruifrok AC, Stephens LC, van der Kogel AJ (1994) Radiation response of the rat cervical spinal cord after irradiation at different ages: tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 29:73–79

    PubMed  CAS  Google Scholar 

  • Ruifrok AC, van der Kogel AJ (1993) The effect of intraspinal cytosine arabinoside on the re-irradiation tolerance of the cervical spinal cord of young and adult rats. Eur J Cancer 29A:1766–1770

    Google Scholar 

  • Ruifrok AC, Kleiboer BJ, van der Kogel AJ (1993) Repair kinetics of radiation damage in the developing rat cervical spinal cord. Int J Radiat Biol 63:501–508

    PubMed  CAS  Google Scholar 

  • Ryu S, Gorty S, Kazee AM et al (2000) Reirradiation of human cervical spinal cord. Am J Clin Oncol 23:29–31

    PubMed  CAS  Google Scholar 

  • Ryu S, Jin JY, Jin R et al (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636

    PubMed  Google Scholar 

  • Saghal A, Larson D, Chang EL (2008) Stereotactic body radiosurgery for spinal metastases: a critical review. Int J Radiat Oncol Biol Phys 71:652–665

    Google Scholar 

  • Sahgal A, Chou D, Ames C et al (2007a) Image-guided robotic stereotactic body radiotherapy for benign spinal tumors: the University of California San Francisco preliminary experience. Technol Cancer Res Treat 6:595–604

    PubMed  CAS  Google Scholar 

  • Sahgal A, Chou D, Ames C et al (2007b) Proximity of spinous/paraspinous radiosurgery metastatic targets to the spinal cord versus risk of local failure. Int J Radiat Oncol Biol Phys 69:S243

    Google Scholar 

  • Salner AL, Botnick LE, Herzog AG et al (1981) Reversible brachial plexopathy following primary radiation therapy for breast cancer. Cancer Treat Rep 65:897–802

    Google Scholar 

  • Schiff D, Shaw EG, Cascino TL (1995) Outcome after spinal reirradiation for malignant epidural spinal cord compression. Ann Neurol 37:583–5899

    PubMed  CAS  Google Scholar 

  • Schultheiss TE, Thames HD, Peters LJ et al (1986) Effect of latency on calculated complication rates. Int J Radiat Oncol Biol Phys 12:1861–1865

    PubMed  CAS  Google Scholar 

  • Schultheiss TE, Stephens LC, Jiang GL et al (1990) Radiation myelopathy in primates treated with conventional fractionation. Int J Radiat Oncol Biol Phys 19:935–940

    PubMed  CAS  Google Scholar 

  • Schultheiss TE, Kun LE, Ang KK et al (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112

    PubMed  CAS  Google Scholar 

  • Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71:1455–1459

    PubMed  Google Scholar 

  • Scruggs H, El-Mahdi A, Marks RD Jr et al (1974) The results of split-course radiation therapy in cancer of the lung. Am J Roentgenol Radium Ther Nucl Med 121:754–760

    PubMed  CAS  Google Scholar 

  • Seddon BM, Cassoni AM, Galloway MJ et al (2005) Fatal radiation myelopathy after high-dose busulfan and melphalan chemotherapy and radiotherapy for Ewing’s sarcoma: a review of the literature and implications for practice. Clin Oncol (R Coll Radiol) 17:385–390

    CAS  Google Scholar 

  • Shaw EG, Gunderson LL, Martin JK, Beart RW, Nagorney DM, Podratz KC (1990) Peripheral nerve and ureteral tolerance to intraoperative radiation therapy: clinical and dose-response analysis. Radiother Oncol 18:247–255

    PubMed  CAS  Google Scholar 

  • Silber JH, Radcliffe J, Peckham V et al (1992) Whole-brain irradiation and decline in intelligence: the influence of dose and age on IQ score. J Clin Oncol 10:1390–1396

    PubMed  CAS  Google Scholar 

  • Sindelar WF, Hoekstra H, Restreo C, Kinsella TJ (1986) Pathological tissue changes following intraoperative radiotherapy. Am J Clin Oncol 9:504–509

    PubMed  CAS  Google Scholar 

  • Smedler AC, Milsson C, Bolme P (1995) Total body irradiation: a neuropsychological risk factor in pediatric bone marrow transplant recipients. Acta Paediatr 84:325–330

    PubMed  CAS  Google Scholar 

  • Sminia P, Oldenburger F, Slotman BJ et al (2002) Re-irradiation of the human spinal cord. Strahlenther Onkol 178:453–456

    PubMed  Google Scholar 

  • Soto O (2005) Radiation-induced conduction block: resolution following anticoagulant therapy. Muscle Nerve 31:642–645

    PubMed  Google Scholar 

  • START Trialists’ Group, Bentzen SM, Agrawal RK, Aird EG, Barrett JM et al (2008) The UK standardisation of breast radiotherapy (START) trial A of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet Oncol 9:331–341

    Google Scholar 

  • START Trialists’ Group, Bentzen SM, Agrawal RK, Aird EG, Barrett JM et al (2008) The UK standardisation of breast radiotherapy (START) trial B of radiotherapy hypofractionation for treatment of early breast cancer: a randomised trial. Lancet 371:1098–1107

    Google Scholar 

  • Stevenson LD, Eckhardt RE (1945) Myelomalacia of the cervical portion of the spinal cord, probably the result of Roentgen therapy. Arch Pathol 39:109–112

    Google Scholar 

  • Stoll B, Andrews JT (1988) Radiation-induced peripheral neuropathy. Br Med J 1:834–837

    Google Scholar 

  • Svennson H, Westling P, Larsson LG (1975) Radiation-induced lesions of the brachial plexus correlated to time-dose-fractionation schedule. Acta Radiol Ther Phys Biol 14:228–238

    Google Scholar 

  • Thomas JE, Cascino TL, Earle JD (1985) Differential diagnosis between radiation and tumour plexopathy of the pelvis. Neurology 35:1–7

    PubMed  CAS  Google Scholar 

  • Timmerman RD, Kavanagh BD, Cho LC, Papiez L, Xing L (2007) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952

    PubMed  Google Scholar 

  • Uchida K, Nakajima H, Takamura T, Kobayashi S, Tsuchida T, Okazawa H, Baba H (2008) Neurological improvement associated with resolution of irradiation-induced myelopathy: serial magnetic resonance imaging and positron emission tomography findings. J Neuroimaging (published online Aug 4)

    Google Scholar 

  • Vujaskovic Z, Gillette SM, Powers BE, LaRue SM, Gillette EL, Borak TB, Scott RJ, Colacchio TA (1994) Intraoperative radiation (IORT) injury to sciatic nerve in a large animal model. Radiother Oncol 30:133–139

    PubMed  CAS  Google Scholar 

  • Vujaskovic Z, Gillette SM, Powers BE, Stukel TA, Larue SM, Gillette EL, Borak TB, Scott RJ, Weiss J, Colacchio TA (1996) Effects of intraoperative irradiation and intraoperative hyperthermia on canine sciatic nerve: neurologic and electrophysiologic study. Int J Radiat Oncol Biol Phys 34:125–131

    PubMed  CAS  Google Scholar 

  • Willett CG, Shellito PC, Tepper JE, Eliseo SR, Convery K, Wood WC (1991) Intraoperative electron beam radiation therapy for recurrent locally advanced rectal or rectosigmoid carcinoma. Cancer 67:1504–1508

    PubMed  CAS  Google Scholar 

  • Withers HR, Taylor JM, Maciejewski B (1988) Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys 14:751–759

    PubMed  CAS  Google Scholar 

  • Williams JA, Roman-Goldstein S, Crossen JR et al (1993) Preirradiation osmotic blood-brain barrier disruption plus combination chemotherapy in gliomas: quantitation of tumor response to assess chemosensitivity. Adv Exp Med Biol 331:273–284

    PubMed  CAS  Google Scholar 

  • Wong CS, Hao Y (1997) Long-term recovery kinetics of radiation damage in rat spinal cord. Int J Radiat Oncol Biol Phys 37:171–179

    PubMed  CAS  Google Scholar 

  • Wong CS, Van Dyk J, Milosevic M et al (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30:575–581

    PubMed  CAS  Google Scholar 

  • Wright JL, Lovelock DM, Bilsky MH et al (2006) Clinical outcomes after reirradiation of paraspinal tumors. Clinical outcomes after reirradiation of paraspinal tumors. Am J Clin Oncol 29:495–502

    PubMed  Google Scholar 

  • Yin FF, Das S, Kirkpatrick J, Oldham M, Wang Z, Zhou SM (2006) Physics and imaging for targeting of oligometastases. Semin Radiat Oncol 16:85–101

    PubMed  Google Scholar 

  • Zhang Shu-Xin (1999) An atlas of histology. Springer, New York, pp 337–339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Kirkpatrick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirkpatrick, J.P. (2014). Spinal Cord and Peripheral Nervous System. In: Rubin, P., Constine, L., Marks, L. (eds) ALERT • Adverse Late Effects of Cancer Treatment. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75863-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75863-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75862-4

  • Online ISBN: 978-3-540-75863-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics