Skip to main content

General Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic Systems in Relativistic Astrophysics

  • Conference paper
Book cover Hyperbolic Problems: Theory, Numerics, Applications

Einstein's theory of general relativity plays a major role in astrophysics, particularly in scenarios involving compact objects such as neutron stars and black holes. Those include gravitational collapse, γ-ray burts, accretion, relativistic jets in active galactic nuclei, or the coalescence of compact neutron star (or black hole) binaries. Astronomers have long been scrutinizing these systems using the complete frequency range of the electromagnetic spectrum. Nowadays, they are the main targets for ground-based laser interferometers of gravitational radiation. The direct detection of these elusive ripples in the curvature of space–time, and the wealth of new information that could be extracted thereof, is one of the driving motivations of present-day research in relativistic astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anile, A.M.: Relativistic fluids and magneto-fluids. Cambridge University Press (1989)

    Google Scholar 

  2. Font, J.A.: Numerical hydrodynamics in general relativity. Liv. Rev. Relativ., 6, 4 (2003)

    MathSciNet  Google Scholar 

  3. Martí, J.M. and Müller, E.: Numerical hydrodynamics in special relativity. Liv. Rev. Relativ., 6, 7 (2003)

    Google Scholar 

  4. Antón, L., Zanotti, O., Miralles, J.A., Martí, J.M., Ibáñez, J.M., Font, J.A., and Pons, J.A.: Numerical 3 + 1 general relativistic magnetohydrodynamics: A local characteristic approach. Astrophys. J., 637, 296–312 (2006)

    Article  Google Scholar 

  5. Alcubierre, M.: Brief introduction to numerical relativity. AIP Conf. Proc., 758, 193–207 (2005)

    Article  MathSciNet  Google Scholar 

  6. Wilson, J.: Numerical study of fluid flow in a Kerr space. Astrophys. J., 173, 431–438 (1972)

    Article  Google Scholar 

  7. Norman, M.L. and Winkler, K-H.: Why ultrarelativistic numerical hydrodynamics is difficult? In Astrophysical Radiation Hydrodynamics, Reidel Publishing Company, 449–475 (1986)

    Google Scholar 

  8. Martí, J.M., Ibáñez, J.M., and Miralles, J.A.: Numerical relativistic hydrodynamics: Local characteristic approach. Phys. Rev. D, 43, 3794–3801 (1991)

    Article  Google Scholar 

  9. Eulderink, F. and Mellema, G.: General relativistic hydrodynamics with a Roe solver. Astron. Astrophys. Suppl. Ser., 110, 587–623 (1995)

    Google Scholar 

  10. Banyuls, F., Font, J.A., Ibáñez, J.M., Martí, J.M., and Miralles, J.A.: Numerical 3 + 1 general relativistic hydrodynamics: A local characteristic approach. Astrophys. J., 476, 221–231 (1997)

    Article  Google Scholar 

  11. Papadopoulos, P. and Font, J.A.: Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes. Phys. Rev. D, 61, 024015 (1999)

    Article  MathSciNet  Google Scholar 

  12. Font, J.A., Miller, M., Suen, W-M., and Tobias, M.: Three-dimensional numerical general relativistic hydrodynamics: Formulations, methods and code tests. Phys. Rev. D, 61, 044011 (2000)

    Article  MathSciNet  Google Scholar 

  13. Brio, M. and Wu, C.C.: An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys., 75, 400–422 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Komissarov, S.S.: A Godunov-type scheme for relativistic magnetohydrodynamics, MNRAS, 303, 343–366 (1999)

    Article  Google Scholar 

  15. Noble, S.C., Gammie, C.F., McKinney, J.C., Del Zanna, L.: Primitive variable solvers for conservative general relativistic magnetohydrodynamics. Astrophys. J., 641, 626–637(2006)

    Article  Google Scholar 

  16. Martí, J.M. and Müller, E.: The analytical solution of the Riemann problem in relativistic hydrodynamics. J. Fluid Mech., 258, 317–333 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pons, J.A., Martí, J.M., and Müller, E.: The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics. J. Fluid Mech., 422, 125–139 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Rezzolla, L. and Zanotti, O.: An improved exact Riemann solver for relativistic hydrodynamics. J. Fluid Mech., 449, 395–411 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Romero, R., Martí, J.M., Pons, J.A., Miralles, J.A., and Ibáñez, J.M.: The exact solution of the Riemann problem in relativistic magnetohydrodynamics with tangential magnetic fields. J. Fluid Mech., 544, 323–338 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Giacomazzo, B. and Rezzolla, L.: The exact solution of the riemann problem in relativistic MHD. J. Fluid Mech., 544, 323–338 (2005)

    Article  MathSciNet  Google Scholar 

  21. Martí, J.M. and Müller, E.: Extension of the piecewise parabolic method to one-dimensional relativistic hydrodynamics. J. Comput. Phys., 123, 1–14 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wen, L., Panaitescu, A., and Laguna, P.: A shock-patching code for ultrarelativistic fluid flows. Astrophys. J., 486, 919–927 (1997)

    Article  Google Scholar 

  23. Balsara, D.: Riemann solver for relativistic hydrodynamics. J. Comput. Phys., 114, 284–297 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. Dai, W. and Woodward, P.: A High-order Godunov-type scheme for shock interactions in ideal magnetohydrodynamics. SIAM J. Sci. Comput., 18, 957–981 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Font, J.A., Ibáñez, J.M., Martí, J.M., and Marquina, A.: Multidimensional relativistic hydrodynamics: Characteristic fields and modern high-resolution shock-capturing schemes. Astron. Astrophys., 282, 304–314 (1994)

    Google Scholar 

  26. Falle, S.A.E.G. and Komissarov, S.S.: An upwind numerical scheme for relativistic hydrodynamics with a general equation of state. Mon. Not. R. Astron. Soc., 278, 586–602 (1996)

    Google Scholar 

  27. Donat, R., Font, J.A., Ibáñez, J.M., and Marquina, A.: A Flux-split algorithm applied to relativistic flows. J. Comput. Phys., 146, 58–81 (1998)

    Article  MATH  Google Scholar 

  28. Koide, S., Shibata, K., and Kudoh, T.: General relativistic magnetohydrodynamic simulations of jets from black hole accretion disks: Two-component jets driven by nonsteady accretion of magnetized disks. Astrophys. J., 495, L63–L66 (1998)

    Article  Google Scholar 

  29. Del Zanna, L. and Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics. Astron. Astrophys., 390, 1177–1186 (2002)

    MATH  Google Scholar 

  30. Anninos, P. and Fragile, P.C.: Non-oscillatory central difference and artificial viscosity schemes for relativistic hydrodynamics. Astrophys. J. Suppl. Ser., 144, 243–257 (2002)

    Article  Google Scholar 

  31. Lucas-Serrano, A., Font, J.A., Ibáñez, J.M., and Martí, J.M.: Assessment of a high-resolution central scheme for the solution of the relativistic hydrodynamics equations. Astron. Astrophys., 428, 703–715 (2004)

    Article  MATH  Google Scholar 

  32. Shibata, M. and Font, J.A.: Robustness of a high-resolution central scheme for hydrodynamic simulations in full general relativity. Phys. Rev. D, 72, 047501 (2005)

    Article  Google Scholar 

  33. Kurganov, A. and Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. J. Comput. Phys., 160, 214 (2000)

    Google Scholar 

  34. Schneider, V., Katscher, V., Rischke, D.H., Waldhauser, B., Marhun, J.A., and Munz, C.-D.: New algorithms for ultra-relativistic numerical hydrodynamics. J. Comput. Phys., 105, 92–107 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  35. Chow, E. and Monaghan, J.J.: Ultrarelativistic SPH. J. Comput. Phys., 134, 296–305 (1997)

    Article  MATH  Google Scholar 

  36. Siegler, S. and Riffert, H.: Smoothed particle hydrodynamics simulations of ultra-relativistic shocks with artificial viscosity. Astrophys. J., 531, 1053-1066 (2000)

    Article  Google Scholar 

  37. Toro, E.F.: Riemann solvers and numerical methods for fluid dynamics. Springer (1997)

    Google Scholar 

  38. Evans, C. and Hawley, J.F.: Simulation of magnetohydrodynamic flows: a constrained transport method. Astrophys. J., 332, 659–677 (1988)

    Article  Google Scholar 

  39. Tóth, G.: The ∇⋅ B = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys., 161, 605–652 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Balsara, D.: Total variation diminishing scheme for relativistic magnetohydrodynamics. Astrophys. J. Suppl. Ser., 132, 83–101 (2001)

    Article  Google Scholar 

  41. Koldoba, A.V., Kuznetsov, O.A., and Ustyugova, G.V.: An approximate Riemann solver for relativistic magnetohydrodynamics. MNRAS, 333, 932–942 (2002)

    Article  Google Scholar 

  42. Komissarov, S.S.: Observations of the Blandford-Znajek process and the magnetohydrodynamic Penrose process in computer simulations of black hole magnetospheres. MNRAS, 359, 801–808 (2005)

    Article  Google Scholar 

  43. Gammie, C.F., McKinney, J.C., and Tóth, G.: HARM: A Numerical scheme for general relativistic magnetohydrodynamics. Astrophys. J., 589, 444–457 (2003)

    Article  Google Scholar 

  44. Duez, M.D., Liu, Y.T., Shapiro, S.L., and Stephens, B.C.: Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests. Phys. Rev. D, 72, 024028 (2005)

    Article  Google Scholar 

  45. Shibata, M. and Sekiguchi, Y.: Magnetohydrodynamics in full general relativity: Formulation and tests. Phys. Rev. D, 72, 044014 (2005)

    Article  MathSciNet  Google Scholar 

  46. Yokosawa, M.: Energy and angular momentum transport in magnetohydrodynamical accretion onto a rotating black hole. Publ. Astron. Soc. Jpn., 45, 207–218 (1993)

    Google Scholar 

  47. De Villiers, J. and Hawley, J.F.: A numerical method for general relativistic magnetohydrodynamics. Astrophys. J., 589, 458–480 (2003)

    Article  Google Scholar 

  48. Font, J.A.: General relativistic hydrodynamics and magnetohydrodynamics and their applications. Plasma Phys. Control. Fusion, 47, B679–B690 (2005)

    Article  Google Scholar 

  49. Buras, R., Rampp, M., Janka, H-T., and Kifonidis, K.: Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing? Phys. Rev. Lett., 90, 241101 (2003)

    Article  Google Scholar 

  50. Dimmelmeier, H., Font, J.A., and Müller, E.: Relativistic simulations of rotational core collapse II. Collapse dynamics and gravitational radiation. Astron. Astrophys., 393, 523–542 (2002)

    Article  Google Scholar 

  51. Cerdá-Durán, P., Faye, G., Dimmelmeier, H., Font, J.A., Ibáñez, J.M., Müller, E., and Schäfer, G.: CFC+: improved dynamics and gravitational waveforms from relativistic core collapse simulations. Astron. Astrophys., 439, 1033–1055 (2005)

    Article  Google Scholar 

  52. Shibata, M. and Sekiguchi, Y.: Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity. Phys. Rev. D, 69, 084024 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Font, J.A. (2008). General Relativistic Hydrodynamics and Magnetohydrodynamics: Hyperbolic Systems in Relativistic Astrophysics. In: Benzoni-Gavage, S., Serre, D. (eds) Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75712-2_1

Download citation

Publish with us

Policies and ethics