Silhouette Based Generic Model Adaptation for Marker-Less Motion Capturing

  • Martin Sunkel
  • Bodo Rosenhahn
  • Hans-Peter Seidel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4814)


This work presents a marker-less motion capture system that incorporates an approach to smoothly adapt a generic model mesh to the individual shape of a tracked person. This is done relying on extracted silhouettes only. Thus, during the capture process the 3D model of a tracked person is learned.

Depending on a sparse number of 2D-3D correspondences, that are computed along normal directions from image sequences of different cameras, a Laplacian mesh editing tool generates the final adapted model. With the increasing number of frames an approach for temporal coherence reduces the effects of insufficient correspondence data to a minimum and guarantees smooth adaptation results. Further, we present experiments on non-optimal data that show the robustness of our algorithm.


Motion Capture Kinematic Chain Human Body Model Walking Sequence Reference Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blaschke, W.: Kinematik und Quaternionen, Mathematische Monographien. 4. Deutscher Verlag der Wissenschaften (1960)Google Scholar
  2. 2.
    Botsch, M., Sorkine, O.: On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics (TVCG) (2007)Google Scholar
  3. 3.
    Bray, M., Kohli, P., Torr, P.: Posecut: Simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bregler, C., Malik, J., Pullen, K.: Twist based acquisition and tracking of animal and human kinetics. International Journal of Computer Vision 56(3), 179–194 (2004)CrossRefGoogle Scholar
  5. 5.
    Bălan, A., Sigal, L., Black, M., Davis, J., Haussecker, H.: Detailed human shape and pose from images. In: CVPR. Proc. Computer Vision and Pattern Recognition (June 2007)Google Scholar
  6. 6.
    Carranza, J., Theobalt, C., Magnor, M.A., Seidel, H.-P.: Free-viewpoint video of human actors. In: Proc. SIGGRAPH 2003, pp. 569–577 (2003)Google Scholar
  7. 7.
    Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Cheung, K.M., Baker, S., Kanade, T.: Shape-from-silhouette across time: Part ii: Applications to human modeling and markerless motion tracking. International Journal of Computer Vision 63(3), 225–245 (2005)CrossRefGoogle Scholar
  9. 9.
    de Aguiar, E., Theobalt, C., Stoll, C., Seidel, H.-P.: Marker-less deformable mesh tracking for human shape and motion capture. In: CVPR. IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, USA (2007)Google Scholar
  10. 10.
    Fua, P., Plänkers, R., Thalmann, D.: Tracking and modeling people in video sequences. Computer Vision and Image Understanding 81(3), 285–302 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Herda, L., Urtasun, R., Fua, P.: Implicit surface joint limits to constrain video-based motion capture. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 405–418. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Magnenat-Thalmann, N., Seo, H., Cordier, F.: Automatic modeling of virtual humans and body clothing. Computer Science and Technology 19(5), 575–584 (2004)CrossRefGoogle Scholar
  13. 13.
    Mikic, I., Trivedi, M., Hunter, E., Cosman, P.: Human body model acquisition and tracking using voxel data. International Journal of Computer Vision 53(3), 199–223 (2003)CrossRefGoogle Scholar
  14. 14.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)CrossRefGoogle Scholar
  15. 15.
    Moeslund, T.B., Granum, E.: A survey of computer vision based human motion capture. Computer Vision and Image Understanding 81(3), 231–268 (2001)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mündermann, L., Corazza, S., Andriacchi, T.: Accurately measuring human movement using articulated icp with soft-joint constraints and a repository of articulated models. In: CVPR. Proc. Computer Vision and Pattern Recognition (June 2007)Google Scholar
  17. 17.
    Murray, R.M., Li, Z., Sastry, S.S.: Mathematical Introduction to Robotic Manipulation. CRC Press, Baton Rouge (1994)zbMATHGoogle Scholar
  18. 18.
    Rosenhahn, B., Brox, T., Kersting, U., Smith, A., Gurney, J., Klette, R.: A system for marker-less motion capture. Künstliche Intelligenz (1), 45–51 (2006)Google Scholar
  19. 19.
    Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. International Journal of Computer Vision 73(3), 243–262 (2006)CrossRefGoogle Scholar
  20. 20.
    Rousson, M., Paragios, N.: Shape priors for level set representations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Sorkine, O.: Laplacian mesh processing. In: Eurographics. Proc. of Eurographics - STAR Volume, pp. 53–70 (2005)Google Scholar
  22. 22.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.-P.: Laplacian surface editing. In: SGP 2004. Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pp. 175–184. ACM Press, New York (2004)CrossRefGoogle Scholar
  23. 23.
    Stoll, C., Karni, Z., Rössl, C., Yamauchi, H., Seidel, H.-P.: Template deformation for point cloud fitting. In: Botsch, M., Chen, B. (eds.) Eurographics. Symposium on Point-Based Graphics, Boston, USA, pp. 27–35 (2006)Google Scholar
  24. 24.
    You, L., Zhang, J.J.: Fast generation of 3d deformable moving surfaces. IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics 33(4), 615–616 (2003)Google Scholar
  25. 25.
    Zayer, R., Rössl, C., Karni, Z., Seidel, H.-P.: Harmonic guidance for surface deformation. In: Alexa, M., Marks, J. (eds.) Eurographics. Proc. of 26th Annual Eurographics Conference, Computer Graphics Forum, Dublin, Ireland, vol. 24, pp. 601–609. Blackwell (2005)Google Scholar
  26. 26.
    Zhang, Z.: Iterative points matching for registration of free form curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Martin Sunkel
    • 1
  • Bodo Rosenhahn
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, 66123 SaarbrückenGermany

Personalised recommendations