Skip to main content

Modeling Human Locomotion with Topologically Constrained Latent Variable Models

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4814))

Abstract

Learned, activity-specific motion models are useful for human pose and motion estimation. Nevertheless, while the use of activity-specific models simplifies monocular tracking, it leaves open the larger issues of how one learns models for multiple activities or stylistic variations, and how such models can be combined with natural transitions between activities. This paper extends the Gaussian process latent variable model (GP-LVM) to address some of these issues. We introduce a new approach to constraining the latent space that we refer to as the locally-linear Gaussian process latent variable model (LL-GPLVM). The LL-GPLVM allows for an explicit prior over the latent configurations that aims to preserve local topological structure in the training data. We reduce the computational complexity of the GPLVM by adapting sparse Gaussian process regression methods to the GP-LVM. By incorporating sparsification, dynamics and back-constraints within the LL-GPLVM we develop a general framework for learning smooth latent models of different activities within a shared latent space, allowing the learning of specific topologies and transitions between different activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arikan, O., Forsyth, D.: Interactive motion generation from examples. In: SIGGRAPH, pp. 483–490 (2002)

    Google Scholar 

  2. Bissacco, A.: Modeling and Learning Contact Dynamics in Human Motion. In: CVPR, pp. 421–428 (2005)

    Google Scholar 

  3. Brand, M., Hertzmann, A.: Style Machines. In: SIGGRAPH, pp. 183–192 (2000)

    Google Scholar 

  4. Elgammal, A., Lee, C.: Separating Style and Content on a Nonlinear Manifold. In: CVPR, vol. 1, pp. 478–485 (2004)

    Google Scholar 

  5. Grochow, K., Martin, S., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics. In: SIGGRAPH, pp. 522–531 (2004)

    Google Scholar 

  6. Vasilescu, M.A.: Human Motion Signatures: Analysis, Synthesis. In: ICPR, pp. 456–460 (2002)

    Google Scholar 

  7. Kovar, L., Gleicher, M., Pighin, F.: Motion Graphs. In: SIGGRAPH, pp. 473–482 (2002)

    Google Scholar 

  8. Lawrence, N., Quinonero-Candela, J.: Local distance preservation in the GP-LVM through back constraints. In: ICML, pp. 513–520 (2006)

    Google Scholar 

  9. Lawrence, N.D., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods: The informative vector machine. In: NIPS, pp. 609–616 (2003)

    Google Scholar 

  10. Lawrence, N.D.: Gaussian Process Models for Visualisation of High Dimensional Data. In: NIPS (2004)

    Google Scholar 

  11. Lawrence, N.: Learning for larger datasets with the Gaussian process latent variable model. In: AISTATS (2007)

    Google Scholar 

  12. Li, R., Yang, M.H., Sclaroff, S., Tian, T.: Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 137–150. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Li, Y., Wang, T., Shum, H.: Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis. In: SIGGRAPH, pp. 465–472 (2002)

    Google Scholar 

  14. Moon, K., Pavlovic, V.: Impact of Dynamics on Subspace Embedding and Tracking of Sequences. In: CVPR, pp. 198–205 (2006)

    Google Scholar 

  15. Pavlovic, J.M., Rehg, J., MacCormick, J.: Learning switching linear models of human motion. In: NIPS, pp. 981–987 (2000)

    Google Scholar 

  16. Quiñonero-Candela, J., Rasmussen, C.E.: A Unifying View of Sparse Approximate Gaussian Process Regression. In: JMLR, vol. 6, pp. 1939–1959 (2006)

    Google Scholar 

  17. Rasmussen, C.E., Williams, C.K.: Gaussian Process for Machine Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  18. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  19. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit Probabilistic Models of Human Motion for Synthesis and Tracking. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, pp. 784–800. Springer, Heidelberg (2002)

    Google Scholar 

  20. Sminchisescu, C., Jepson, A.: Generative Modeling for Continuous Non-Linearly Embedded Visual Inference. In: ICML, pp. 96–103 (2004)

    Google Scholar 

  21. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: NIPS, pp. 1257–1264 (2006)

    Google Scholar 

  22. Taylor, G.W., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent variables. In: NIPS, pp. 1345–1352 (2007)

    Google Scholar 

  23. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  24. Tian, T., Li, R., Sclaroff, S.: Articulated Pose Estimation in a Learned Smooth Space of Feasible Solutions. In: CVPR Learning Workshop (2005)

    Google Scholar 

  25. Urtasun, R.: Motion Models for Robust 3D Human Body Tracking. PhD thesis, EPFL (2006)

    Google Scholar 

  26. Urtasun, R., Fleet, D.J., Fua, P.: 3d people tracking with gaussian process dynamical models. In: CVPR, vol. 1, pp. 238–245 (2006)

    Google Scholar 

  27. Urtasun, R., Fleet, D.J., Hertzman, A., Fua, P.: Priors for people tracking from small training sets. In: ICCV, pp. 403–410 (2005)

    Google Scholar 

  28. Wang, J., Fleet, D.J., Hertzman, A.: Gaussian Process dynamical models. In: NIPS, pp. 1441–1448 (2005)

    Google Scholar 

  29. Wang, J., Fleet, D.J., Hertzman, A.: Multifactor Gaussian Process Models for Style-Content Separation. In: ICML, pp. 975–982 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ahmed Elgammal Bodo Rosenhahn Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urtasun, R., Fleet, D.J., Lawrence, N.D. (2007). Modeling Human Locomotion with Topologically Constrained Latent Variable Models. In: Elgammal, A., Rosenhahn, B., Klette, R. (eds) Human Motion – Understanding, Modeling, Capture and Animation. HuMo 2007. Lecture Notes in Computer Science, vol 4814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75703-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75703-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75702-3

  • Online ISBN: 978-3-540-75703-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics