Advertisement

Gradient-Enhanced Particle Filter for Vision-Based Motion Capture

  • Daniel Grest
  • Volker Krüger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4814)

Abstract

Tracking of rigid and articulated objects is usually addressed within a particle filter framework or by correspondence based gradient descent methods. We combine both methods, such that (a) the correspondence based estimation gains the advantage of the particle filter and becomes able to follow multiple hypotheses while (b) the particle filter becomes able to propagate the particles in a better manner and thus gets by with a smaller number of particles. Results on noisy synthetic depth data show that the new method is able to track motion correctly where the correspondence based method fails. Further experiments with real-world stereo data underline the advantages of our coupled method.

Keywords

Joint Angle Gradient Descent Particle Filter Motion Capture Body Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chong, E.K.P.: Introduction to Optimization, 2nd edn. Wiley, Chichester (2001)zbMATHGoogle Scholar
  2. 2.
    Cover, T., Thomas, J.: Elements of Information Theory. Wiley, Chichester (1991)zbMATHGoogle Scholar
  3. 3.
    de Aguiar, E., Theobalt, C., Magnor, M., Seidel, H.-P.: Reconstructing Human Shape and Motion from Multi-View Video. In: CVMP. 2nd European Conference on Visual Media Production, London, UK (2005)Google Scholar
  4. 4.
    Demirdjian, D., Ko, T., Darrell, T.: Constraining Human Body Tracking. In: Proceedings of ICCV, Nice, France (October 2003)Google Scholar
  5. 5.
    Deutscher, J., Blake, A., Reid, I.: Articulated Body Motion Capture by Annealed Particle Filtering. In: CVPR, vol. 2 (2000)Google Scholar
  6. 6.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering, vol. 10, pp. 197–209 (2000)Google Scholar
  7. 7.
    Mündermann, L., et al.: Validation of a markerless motion capture system for the calculation of lower extremity kinematics. In: Proc. American Society of Biomechanics, Cleveland, USA (2005)Google Scholar
  8. 8.
    Falkenhagen, L.: Hierarchical block-based disparity estimation considering neighbourhood constraints. In: International workshop on SNHC and 3D Imaging (1997)Google Scholar
  9. 9.
    Grest, D., Herzog, D., Koch, R.: Human Model Fitting from Monocular Posture Images. In: VMV (November 2005)Google Scholar
  10. 10.
    Grest, D., Woetzel, J., Koch, R.: Nonlinear Body Pose Estimation from Depth Images. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Isard, M., Blake, A.: CONDENSATION – Conditional Density Propagation for Visual Tracking. International Journal of Compputer Vision 29, 5–28 (1998)CrossRefGoogle Scholar
  12. 12.
    Stiefelhagen, R., Ziegler, J., Nickel, K.: Tracking of the Articulated Upper Body on Multi-View Stereo Image Sequences. In: CVPR, vol. 1, pp. 774–781. IEEE Computer Society, New York (2006)Google Scholar
  13. 13.
    Kehl, R., Bray, M., Van Gool, L.J.: Full Body Tracking from Multiple Views Using Stochastic Sampling. In: Proc. CVPR, pp. 129–136 (2005)Google Scholar
  14. 14.
    Liu, J.S., Chen, R.: Sequential monte carlo for dynamic systems, vol. 93, pp. 1031–1041 (1998)Google Scholar
  15. 15.
    MacKay, D.: Learning in Graphical Models. In: Jordan, M. (ed.) Introduction to Monte Carlo Methods, pp. 175–204. MIT Press, Cambridge (1999)Google Scholar
  16. 16.
    Moeslund, T., Hilton, A., Krueger, V.: A Survey of Advances in Vision-based Human Motion Capture and Analysis. Computer Vision and Image Understanding 104(2-3), 90–127 (2006)CrossRefGoogle Scholar
  17. 17.
    Moon, H., Chellappa, R., Rosenfeld, A.: 3d object tracking using shape-encoded particle propagation (2001)Google Scholar
  18. 18.
    Plänkers, R., Fua, P.: Model-Based Silhouette Extraction for Accurate People Tracking. In: Tistarelli, M., Bigun, J., Jain, A.K. (eds.) ECCV 2002. LNCS, vol. 2359, pp. 325–339. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Rosenhahn, B., Kersting, U., Smith, D., Gurney, J., Brox, T., Klette, R.: A System for Marker-Less Human Motion Estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, Springer, Heidelberg (2005)Google Scholar
  20. 20.
    Videre. Videre Design: Stereo On A Chip (2007), www.videredesign.com
  21. 21.
    Zhang, Z.: Flexible Camera Calibration By Viewing a Plane From Unknown Orientations. In: ICCV, Corfu, Greece, pp. 666–673 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Daniel Grest
    • 1
  • Volker Krüger
    • 1
  1. 1.Aalborg University Copenhagen, Denmark, Computer Vision and Machine Intelligence Lab 

Personalised recommendations