Skip to main content

Learning Actions Using Robust String Kernels

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4814))

Abstract

This paper presents an action analysis method based on robust string matching using dynamic programming. Similar to matching text sequences, atomic actions based on semantic and structural features are first detected and coded as spatio-temporal characters or symbols. These symbols are subsequently concatenated to form a unique set of strings for each action. A similarity metric using longest common subsequence algorithm is employed to robustly match action strings with variable length. A dynamic programming method with polynomial computational complexity and linear space complexity is implemented. An effective learning scheme based on similarity metric embedding is developed to deal with matching strings of variable length. Our proposed method works with limited amount of training data and exhibits desirable generalization property. Moreover, it can be naturally extended to detect compound behaviors and events. Experimental evaluation on our own and a commonly used data set demonstrates that our method allows for large pose and appearance changes, is robust to background clutter, and can accommodate spatio-temporal behavior variations amongst different subjects while achieving high discriminability between different behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Efros, A.A., Berg, A.C., Mori, G., Malik, J.: Recognizing action at a distance. In: International Conference on Computer Vision, Nice, France, pp. 726–733 (2003)

    Google Scholar 

  2. Ke, Y., Sukthankar, R., Hebert, M.: Efficient visual event detection using volumetric features. In: International Conference on Computer Vision, vol. I, pp. 166–173 (October 2005)

    Google Scholar 

  3. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: A local svm approach. In: International Conference on Pattern Recognition, Cambridge, United Kingdom, vol. 3, pp. 32–36 (August 2004)

    Google Scholar 

  4. Zhong, H., Shi, J., Visontai, M.: Detecting unusual activity in video. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 819–826. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  5. Boiman, O., Irani, M.: Similarity by composition. In: Neural Information Processing Systems, Vancouver, Canada (2006)

    Google Scholar 

  6. Yacoob, Y., Black, M.: Parameterized modeling and recognition of activities. Computer Vision and Image Understanding (CVIU) 73, 232–247 (1999)

    Article  Google Scholar 

  7. Davis, J.W., Bobick, A.F.: The representation and recognition of action using temporal templates. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 928–934. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  8. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: International Conference on Computer Vision, Nice, France, vol. 2, pp. 1470–1477 (October 2003)

    Google Scholar 

  9. Schodl, A., Szeliski, R., Salesin, D.H., Essa, I.: Video textures. In: Proceedings of the conference on Computer graphics and interactive techniques, pp. 489–498 (2000)

    Google Scholar 

  10. Zelnik-Manor, L., Irani, M.: Event-based analysis of video. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 123–130. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  11. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of articulated objects using view-based representation. International Journal of Computer Vision 26(1), 63–84 (1998)

    Article  Google Scholar 

  12. Shechtman, E., Irani, M.: Space-time behavior based correlation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 405–412. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  13. Laptev, I., Lindeberg, T.: Space-time interest points. In: International Conference on Computer Vision, pp. 432–439 (2003)

    Google Scholar 

  14. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  15. Gusfield, D.: Algorithms on Strings, Trees and Sequences–Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)

    Article  MATH  Google Scholar 

  17. Leslie, C.S., Eskin, E., Cohen, A., Weston, J., Noble, W.S.: Mismatch string kernels for discriminative protein classification. Bioinformatics 20(4), 467–476 (2004)

    Article  Google Scholar 

  18. Ivanov, Y., Bobick, A.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. on Pattern Analysis and Machine Intelligence 22, 852–872 (2000)

    Article  Google Scholar 

  19. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: ICCV VS-PETS, Beijing, China, pp. 65–72 (2005)

    Google Scholar 

  20. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, pp. 593–600. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  23. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

  24. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  25. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ahmed Elgammal Bodo Rosenhahn Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, C., Guo, Y., Sawhney, H.S., Kumar, R. (2007). Learning Actions Using Robust String Kernels. In: Elgammal, A., Rosenhahn, B., Klette, R. (eds) Human Motion – Understanding, Modeling, Capture and Animation. HuMo 2007. Lecture Notes in Computer Science, vol 4814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75703-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75703-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75702-3

  • Online ISBN: 978-3-540-75703-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics