Skip to main content

Behavior Histograms for Action Recognition and Human Detection

  • Conference paper
Book cover Human Motion – Understanding, Modeling, Capture and Animation (HuMo 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4814))

Included in the following conference series:

Abstract

This paper presents an approach for human detection and simultaneous behavior recognition from images and image sequences. An action representation is derived by applying a clustering algorithm to sequences of Histogram of Oriented Gradient (HOG) descriptors of human motion images. For novel image sequences, we first detect the human by matching extracted descriptors with the prototypical action primitives. Given a sequence of assigned action primitives, we can build a histogram from observed motion. Thus, behavior can be classified by means of histogram comparison, interpreting behavior recognition as a problem of statistical sequence analysis. Results on publicly available benchmark-data show a high accuracy for action recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thurau, C., Hlaváč, V.: n-grams of Action Primitives for Recognizing Human Behavior. In: CAIP 2007. The 12th International Conference on Computer Analysis of Images and Patterns, Springer, Heidelberg (2007)

    Google Scholar 

  2. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as Space-Time Shapes. In: Tenth IEEE International Conference on Computer Vision, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  3. Niebles, J.C., Fei-Fei, L.: A Hierarchical Model of Shape and Appearance for Human Action Classification. In: CVPR 2007. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: CVPR 2005. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  5. Thurau, C., Bauckhage, C., Sagerer, G.: Synthesizing Movements for Computer Game Characters. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 179–186. Springer, Heidelberg (2004)

    Google Scholar 

  6. Schack, T., Mechsner, F.: Representation of motor skills in human long-term memory. Neuroscience Letters 391, 77–81 (2006)

    Article  Google Scholar 

  7. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words. In: BMVC 2006. British Machine Vision Conference (2006)

    Google Scholar 

  8. Lu, W.L., Little, J.J.: Simultaneous tracking and action recognition using the pca-hog descriptor. In: CRV 2006. The Third Canadian Conference on Computer and Robot Vision (2006)

    Google Scholar 

  9. Ghahramani, Z.: Building blocks of movement. Nature 407, 682–683 (2000)

    Article  Google Scholar 

  10. Wolpert, D.M., Ghahramani, Z., Flanagan, J.R.: Perspectives and problems in motor learning. TRENDS in Cognitive Sciences 5(11), 487–494 (2001)

    Article  Google Scholar 

  11. Krüger, V., Kragic, D., Ude, A., Geib, C.: Meaning of action (2007)

    Google Scholar 

  12. Thoroughman, K., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000)

    Article  Google Scholar 

  13. Fod, A., Matarić, M., Jenkins, O.: Automated Derivation of Primitives for Movement Classification. Autonomous Robots 12(1), 39–54 (2002)

    Article  MATH  Google Scholar 

  14. Lee, C.S., Elgammal, A.: Human motion synthesis by motion manifold learning and motion primitive segmentation. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2006. LNCS, vol. 4069, pp. 464–473. Springer, Heidelberg (2006)

    Google Scholar 

  15. Moeslund, T., Reng, L., Granum, E.: Finding Motion Primitives in Human Body Gestures. In: Gibet, S., Courty, N., Kamp, J.F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 133–144. Springer, Heidelberg (2006)

    Google Scholar 

  16. Moeslund, T., Fihl, P., Holte, M.: Action Recognition using Motion Primitives. In: The 15th Danish conference on pattern recognition and image analysis (2006)

    Google Scholar 

  17. Ogale, A.S., Karapurkar, A., Aloimonos, Y.: View-invariant modeling and recognition of human actions using grammars. In: ICCV Workshop on Dynamical Vision (2005)

    Google Scholar 

  18. Guerra-Filho, G., Aloimonos, Y.: A Sensory-Motor Language for Human Activity Understanding. In: HUMANOIDS 2006. 6th IEEE-RAS International Conference on Humanoid Robots, pp. 69–75. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  19. Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G.: Detection and Explanation of Anomalous Activities: Representing Activities as Bags of Event n-Grams. In: CVPR 2005. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  20. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Behavior classification by eigendecomposition of periodic motions. Pattern Recognition 38, 1033–1043 (2005)

    Article  Google Scholar 

  21. Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 20, 91–110 (2003)

    Google Scholar 

  22. Schroff, F., Criminisi, A., Zisserman, A.: Single-Histogram Class Models for Image Segmentation. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (2006)

    Google Scholar 

  23. Porikli, F.: Integral histogram: A fast way to extract higtograms in cartesian spaces. In: CVPR. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 829–836. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  24. Zhu, Q., Avidan, S., Yeh, M., Cheng, K.: Fast Human Detection Using a Cascade of Histograms of Oriented Gradients. In: IEEE Computer Society Conference on Computer vision and Pattern Recognition, pp. 1491–1498. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  25. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: European Conference on Computer Vision (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ahmed Elgammal Bodo Rosenhahn Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thurau, C. (2007). Behavior Histograms for Action Recognition and Human Detection. In: Elgammal, A., Rosenhahn, B., Klette, R. (eds) Human Motion – Understanding, Modeling, Capture and Animation. HuMo 2007. Lecture Notes in Computer Science, vol 4814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75703-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75703-0_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75702-3

  • Online ISBN: 978-3-540-75703-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics