Advertisement

Human Motion Recognition Using Isomap and Dynamic Time Warping

  • Jaron Blackburn
  • Eraldo Ribeiro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4814)

Abstract

In this paper, we address the problem of recognizing human motion from videos. Human motion recognition is a challenging computer vision problem. In the past ten years, a number of successful approaches based on nonlinear manifold learning have been proposed. However, little attention has been given to the use of isometric feature mapping (Isomap) for human motion recognition. Our contribution in this paper is twofold. First, we demonstrate the applicability of Isomap for dimensionality reduction in human motion recognition. Secondly, we show how an adapted dynamic time warping algorithm (DTW) can be successfully used for matching motion patterns of embedded manifolds. We compare our method to previous works on human motion recognition. Evaluation is performed utilizing an established baseline data set from the web for direct comparison. Finally, our results show that our Isomap-DTW method performs very well for human motion recognition.

Keywords

human motion recognition non-linear manifold learning dynamic time warping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, J.K., Cai, Q.: Human motion analysis: a review. Computer Vision and Image Understanding 73(3), 428–440 (1999)CrossRefGoogle Scholar
  2. 2.
    Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach. Advances in Knowledge Discovery and Data Mining, pp. 229–248 (1996)Google Scholar
  3. 3.
    Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: IEEE International Conference on Computer Vision, Washington, DC, USA, pp. 1395–1402 (2005)Google Scholar
  4. 4.
    Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001)CrossRefGoogle Scholar
  5. 5.
    Bregler, C.: Learning and recognizing human dynamics in video sequences. In: CVPR 1997. Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, p. 568. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  6. 6.
    Bregler, C., Malik, J.: Learning appearance based models: Mixtures of second moment experts. In: Advances in Neural Information Processing Systems, vol. 9, p. 845. The MIT Press, Cambridge (1997)Google Scholar
  7. 7.
    de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Becker, S., Thrun, S., Obermayer, K. (eds.) NIPS, pp. 705–712. MIT Press, Cambridge (2002)Google Scholar
  8. 8.
    Elgammal, A., Lee, C.-S.: Inferring 3D body pose from silhouettes using activity manifold learning. In: IEEE International Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, vol. 02, pp. 681–688 (2004)Google Scholar
  9. 9.
    Fanti, C., Zelnik-Manor, L., Perona, P.: Hybrid models for human motion recognition. In: CVPR. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 1, pp. 1166–1173 (2005)Google Scholar
  10. 10.
    Gavrila, D., Davis, L.: 3D model-based tracking of humans in action: A multi-view approach. In: CVPR. Conference on Computer Vision and Pattern Recognition, June 18–20, 1996, San Francisco, CA, USA (1996)Google Scholar
  11. 11.
    Gavrila, D.M.: The visual analysis of human movement: a survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Green, R.D., Guan, L.: Quantifying and recognizing human movement patterns from monocular video images-part i: a new framework for modeling human motion. IEEE Trans. Circuits Syst. Video Techn. 14(2), 179–190 (2004)CrossRefGoogle Scholar
  13. 13.
    He, X., Niyogi, P.: Locality preserving projections. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural Information Processing Systems 16, MIT Press, Cambridge (2004)Google Scholar
  14. 14.
    Heisele, C., Woehler, B.: Motion-based recognition of pedestrians. In: IEEE International Conference on Pattern Recognition, Washington, DC, USA, vol. 2, p. 1325. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  15. 15.
    Ju, S.X., Black, M.J., Yacoob, Y.: Cardboard people: A parameterized model of articulated motion. In: International Conference on Automatic Face and Gesture Recognition, Killington, Vermont, pp. 38–44 (1996)Google Scholar
  16. 16.
    Keogh, E.J., Ratanamahatana, C.A.: Exact indexing of dynamic time warping. Knowledge and Information Systems 7(3), 358–386 (2005)CrossRefGoogle Scholar
  17. 17.
    Masoud, O., Papanikolopoulos, N.: A method for human action recognition. Image Vision Computing 21(8), 729–743 (2003)CrossRefGoogle Scholar
  18. 18.
    Rehg, J., Kanade, T.: Digiteyes: Vision-based human hand tracking. Technical Report CMU-CS-93-220, Computer Science Department, Carnegie Mellon University, Pittsburgh, PA (December 1993)Google Scholar
  19. 19.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  20. 20.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  21. 21.
    Tian, Y.-L., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time video surveillance. In: CVPR. IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, vol. 1, pp. 1182–1187 (2005)Google Scholar
  22. 22.
    Vintsyuk, T.K.: Speech discrimination by dynamic programming. Cybernetics and Systems Analysis 4(1), 52–57 (1968)MathSciNetGoogle Scholar
  23. 23.
    Wang, L., Suter, D.: Analyzing human movements from silhouettes using manifold learning. In: IEEE International Conference on Video and Signal Based Surveillance, Washington, DC, USA, p. 7 (2006)Google Scholar
  24. 24.
    Wilson, A.D., Bobick, A.F.: Parametric hidden markov models for gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 884–900 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jaron Blackburn
    • 1
  • Eraldo Ribeiro
    • 1
  1. 1.Computer Vision and Bio-Inspired Computing Laboratory, Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901USA

Personalised recommendations