Advertisement

Articulated Object Registration Using Simulated Physical Force/Moment for 3D Human Motion Tracking

  • Bingbing Ni
  • Stefan Winkler
  • Ashraf Kassim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4814)

Abstract

In this paper, we present a 3D registration algorithm based on simulated physical force/moment for articulated human motion tracking. Provided with sparsely reconstructed 3D human surface points from multiple synchronized cameras, the tracking problem is equivalent to fitting the 3D model to the scene points. The simulated physical force/ moment generated by the displacement between the model and the scene points is used to align the model with the scene points in an Iterative Closest Points (ICP) [1] approach. We further introduce a hierarchical scheme for model state updating, which automatically incorporates human kinematic constraints. Experimental results on both synthetic and real data from several unconstrained motion sequences demonstrate the efficiency and robustness of our proposed method.

Keywords

Iterative Closest Points 3D Registration Articulated Human Motion Tracking Simulated Physical Force/Moment Kinematic Constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Besl, P., McKay, H.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  2. 2.
    Gavrila, D., Davis, L.: 3-D model-based tracking of humans in action: A multi-view approach. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 73–80. IEEE Computer Society Press, Los Alamitos (1996)Google Scholar
  3. 3.
    Delamarre, Q., Faugeras, O.: 3D articulated models and multi-view tracking with silhouettes. In: Proc. IEEE International Conference on Computer Vision, Corfu, Greece, vol. 2, pp. 716–721. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  4. 4.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, vol. 2, pp. 126–133. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  5. 5.
    Han, T., Huang, T.: Articulated body tracking using dynamic belief propagation. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Proc. IEEE International Workshop on Human-computer Interaction. LNCS, vol. 3766, pp. 26–35. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Cheung, K., Baker, S., Kanade, T.: Shape-from-silhouette of articulated objects and its use for human body kinematics estimation and motion capture. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, vol. 1, pp. I–77–I–84 (2003)Google Scholar
  7. 7.
    Cheung, K., Kanade, T., Bouguet, J., Holler, M.: A real time system for robust 3D voxel reconstruction of human motions. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, SC, USA, vol. 2, pp. 714–720. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  8. 8.
    Delamarre, Q., Faugeras, O.: 3D articulated models and multi-view tracking with physical forces. Computer Vision and Image Understanding 81(2), 328–357 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Demirdjian, D.: Enforcing constraints for human body tracking. In: Proc. Workshop on Multi-Object Tracking (2003)Google Scholar
  10. 10.
    Knoop, S., Vacek, S., Dillmann, R.: Modeling joint constraints for an articulated 3D human body model with artificial correspondences in ICP. In: Proc. IEEE-RAS International Conference on Humanoid Robots, Tsukuba, Japan, pp. 74–79 (December 2005)Google Scholar
  11. 11.
  12. 12.
    Franco, J., Boyer, E.: Exact polyhedral visual hulls. In: Proc. British Machine Vision Conference (2003)Google Scholar
  13. 13.
    Belongie, S., Malik, J.: Matching with shape context. In: Proc. IEEE Workshop on Content-based Access of Image and Video Libraries, Hilton Head, SC, USA, pp. 20–26. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  14. 14.
    Kortgen, M., Park, G., Novotni, M., Klein, R.: 3D shape matching with 3D shape context. In: Proc. 7th Central European Seminar on Computer Graphics (April 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bingbing Ni
    • 1
  • Stefan Winkler
    • 1
  • Ashraf Kassim
    • 1
  1. 1.Department of Electrical and Computer Engineering, National University of Singapore 117576Singapore

Personalised recommendations