Joint Appearance and Deformable Shape for Nonparametric Segmentation

  • Sylvain Boltz
  • Éric Debreuve
  • Michel Barlaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4814)


This paper deals with region-of-interest (ROI) segmentation in video sequences. The goal is to determine in one frame the region which best matches, in terms of a similarity measure, a ROI defined in a reference frame. A similarity measure can combine color histograms and geometry information into a joint PDF. Geometric information are basically interior region coordinates. We propose a system of shape coordinates constant under shape deformations. High-dimensional color-geometry PDF estimation being a difficult problem, measures based on these PDF distances may lead to an incorrect match. Instead, we use an estimator for Kullback-Leibler divergence efficient for high dimensional PDFs. The distance is expressed from the samples using the kth-nearest neighbor framework (kNN). We plugged this distance into active contour framework using shape derivative. Segmentation results on both rigid and articulated objects showed promising results.


Spatial Feature Active Contour Probability Density Function Cross Entropy Shape Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, J., Fisher, J.W.F., Yezzi, A., Çetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Transactions on Image Processing 14(10), 1486–1502 (2005)CrossRefGoogle Scholar
  2. 2.
    Freedman, D., Zhang, T.: Active contours for tracking distributions. IEEE Transactions on Image Processing 13(4), 518–526 (2004)CrossRefGoogle Scholar
  3. 3.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)CrossRefGoogle Scholar
  4. 4.
    Cremers, D., Soatto, S.: Motion competition: A variational framework for piecewise parametric motion segmentation. International Journal of Computer Vision 62(3), 249–265 (2005)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Rousson, M., Paragios, N.: Shape priors for level set representations. In: European Conference on Computer Vision, pp. 78–92 (2002)Google Scholar
  7. 7.
    Cremers, D., Osher, S.J., Soatto, S.: Kernel density estimation and intrinsic alignment for shape priors in level set segmentation. International Journal of Computer Vision 69(3), 335–351 (2006)CrossRefGoogle Scholar
  8. 8.
    Elgammal, A., Duraiswami, R., Davis, L.S.: Probabilistic tracking in joint feature-spatial spaces. In: IEEE International Conference on Computer Vision and Pattern Recognition, Madison, WI, pp. 781–788. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  9. 9.
    Sharon, E., Mumford, D.: 2d-shape analysis using conformal mapping. International Journal of Computer Vision 70(1), 55–75 (2006)CrossRefGoogle Scholar
  10. 10.
    Leventon, M.E., Faugeras, O., Grimson, W.E.L., Wells III, W.M.: Level set based segmentation with intensity and curvature priors. In: IEEE Computer Society Workshop on Mathematical Methods in Biomedical Image Analysis (2000)Google Scholar
  11. 11.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Transactions Pattern Analysis Machine Intelligence 24(4), 509–522 (2002)CrossRefGoogle Scholar
  12. 12.
    Scott, D.: Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley, Chichester (1992)zbMATHGoogle Scholar
  13. 13.
    Fukunaga, K.: Introduction to statistical pattern recognition, 2nd edn. Academic Press Professional, Inc., London (1990)zbMATHGoogle Scholar
  14. 14.
    Terrell, G.R., Scott, D.W.: Variable kernel density estimation. The Annals of Statistics 20, 1236–1265 (1992)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Goria, M.N., Leonenko, N.N., Mergel, V.V., Inverardi, P.L.N.: A new class of random vector entropy estimators and its applications in testing statistical hypotheses. J. Nonparametr. Stat. 17(3), 277–297 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Aubert, G., Barlaud, M., Faugeras, O., Jehan-Besson, S.: Image segmentation using active contours: Calculus of variations or shape gradients? SIAM Applied Mathematics 1(2), 2128–2145 (2003)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Boltz, S., Debreuve, E., Barlaud, M.: High-dimensional statistical distance for region-of-interest tracking: Application to combining a soft geometric constraint with radiometry. In: CVPR 2007. IEEE International Conference on Computer Vision and Pattern Recognition, Minneapolis, USA (2007)Google Scholar
  18. 18.
    Ahmad, I., Lin, P.: A nonparametric estimation of the entropy for absolutely continuous distributions. IEEE Transactions on Information Theory 22, 372–375 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Huang, X., Paragios, N., Metaxas, D.: Shape registration in implicit spaces using information theory and free form deformations. IEEE Transactions Pattern Analysis Machine Intelligence 28(8), 1303–1318 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sylvain Boltz
    • 1
  • Éric Debreuve
    • 1
  • Michel Barlaud
    • 1
  1. 1.Laboratoire I3S, Université de Nice-Sophia Antipolis, CNRS, 2000 route des Lucioles, 06903 Sophia AntipolisFrance

Personalised recommendations