Skip to main content

Inferring and Distributing Spatial Context

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4793))

Abstract

An increasing number of computationally enhanced objects is distributed around us in physical space, which are equipped – or at least can be provided – with sensors for measuring spatial contexts like position, direction and acceleration. We consider spatial relationships between them, which can basically be acquired by a pairwise comparison of their spatial contexts, as crucial information for a variety of applications. If such objects do have wireless communication capabilities, they will be able to build up an ad-hoc network and exchange their spatial contexts among each other. However, processing detailed sensor information and routing it through the network lowers their battery lifetime or even may exceed the capabilities of embedded systems with limited resources. Thus, we present a novel and efficient approach for inferring and distributing spatial contexts in multi-hop networks, which builds upon qualitative spatial representation and reasoning techniques. Simulation results show its behavior with respect to common network topologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holzmann, C., Ferscha, A.: Towards collective spatial awareness using binary relations. In: ICAS 2007. 3rd International Conference on Autonomic and Autonomous Systems, Athens, Greece, June 19-25, 2007, pp. 19–25. IEEE CS Press, Los Alamitos (2007)

    Google Scholar 

  2. Abdelmoty, A.I., El-Geresy, B.: An intersection-based formalism for representing orientation relations in a geographic database. In: 2nd ACM Workshop on Advances In Geographic Information Systems, Workshop at CIKM 1995, Gaitherburg, MD, USA, December 1-2, 1994, pp. 44–51. ACM Press, New York (1994)

    Google Scholar 

  3. Clementini, E., Felice, P.D., Hernández, D.: Qualitative representation of positional information. Artificial Intelligence 95(2), 317–356 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cohn, A.G., Hazarika, S.M.: Qualitative spatial representation and reasoning: An overview. Fundamenta Informaticae 46(1-2), 1–29 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Hobbs, J.R., Narayanan, S.: Spatial representation and reasoning. In: Encyclopedia of Cognitive Science, MacMillan, London (2002)

    Google Scholar 

  6. Moratz, R., Dylla, F., Frommberger, L.: A relative orientation algebra with adjustable granularity. In: Workshop on Agents in Real-Time and Dynamic Environments at IJCAI 2005, Edinburgh, Scotland (July 30 - August 5, 2005)

    Google Scholar 

  7. Freksa, C.: Using orientation information for qualitative spatial reasoning. In: Frank, A.U., Formentini, U., Campari, I. (eds.) Theories and Methods of Spatio-Temporal Reasoning in Geographic Space. LNCS, vol. 639, pp. 162–178. Springer, Heidelberg (1992)

    Google Scholar 

  8. Hernández, D.: Qualitative Representation of Spatial Knowledge. LNCS, vol. 804. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  9. Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 65–74. Springer, Heidelberg (2004)

    Google Scholar 

  10. Hernández, D., Clementini, E., Felice, P.D.: Qualitative distances. In: Kuhn, W., Frank, A.U. (eds.) COSIT 1995. LNCS, vol. 988, pp. 45–57. Springer, Heidelberg (1995)

    Google Scholar 

  11. Klatzky, R.L.: Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds.) Spatial Cognition. LNCS, vol. 1404, pp. 1–18. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Hazas, M., Kray, C., Gellersen, H.W., Agbota, H., Kortuem, G., Krohn, A.: A relative positioning system for co-located mobile devices. In: MobiSys 2005. 3rd International Conference on Mobile Systems, Applications, and Services, Seattle, Washington, USA, June 6-8, 2005, pp. 177–190. ACM, New York (2005)

    Chapter  Google Scholar 

  13. Ferscha, A., Hechinger, M., Mayrhofer, R., dos Santos Rocha, M., Franz, M., Oberhauser, R.: Digital aura. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 405–410. Springer, Heidelberg (2004)

    Google Scholar 

  14. Dylla, F., Frommberger, L., Wallgrün, J.O., Wolter, D.: SparQ: A toolbox for qualitative spatial representation and reasoning. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314, pp. 79–90. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Workshop, I.M.A.C.S. (ed.) IMACS Workshop on Decision Support Systems and Qualitative Reasoning, Toulouse, France, March 13-15, 1991, pp. 181–187. Elsevier Science Publishers, Amsterdam (1991)

    Google Scholar 

  16. Scivos, A., Nebel, B.: The finest of its class: The natural point-based ternary calculus for qualitative spatial reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 283–303. Springer, Heidelberg (2005)

    Google Scholar 

  17. Moratz, R., Renz, J., Wolter, D.: Qualitative spatial reasoning about line segments. In: ECAI 2000. 14th European Conference on Artificial Intelligence, Berlin, Germany, August 20-25, 2000, pp. 234–238. IOS Press, Amsterdam (2000)

    Google Scholar 

  18. Moratz, R.: Qualitative spatial reasoning about oriented points. Technical Report SFB/TR 8 Report No. 003-10/2004, University of Bremen, Bremen, Germany (October 2004)

    Google Scholar 

  19. Zimmermann, K., Freksa, C.: Qualitative spatial reasoning using orientation, distance, and path knowledge. Applied Intelligence 6(1), 49–58 (1996)

    Article  Google Scholar 

  20. Sharman, J.: Integrated Spatial Reasoning in Geographic Information Systems: Combining Topology and Direction. PhD thesis, University of Maine (May 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerd Kortuem Joe Finney Rodger Lea Vasughi Sundramoorthy

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzmann, C. (2007). Inferring and Distributing Spatial Context. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds) Smart Sensing and Context. EuroSSC 2007. Lecture Notes in Computer Science, vol 4793. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75696-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75696-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75695-8

  • Online ISBN: 978-3-540-75696-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics