Bottleneck Detection Using Statistical Intervention Analysis

  • Simon Malkowski
  • Markus Hedwig
  • Jason Parekh
  • Calton Pu
  • Akhil Sahai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4785)


The complexity of today’s large-scale enterprise applications demands system administrators to monitor enormous amounts of metrics, and reconfigure their hardware as well as software at run-time without thorough understanding of monitoring results. The Elba project is designed to achieve an automated iterative staging to mitigate the risk of violating Service Level Objectives (SLOs). As part of Elba we undertake performance characterization of system to detect bottlenecks in their configurations. In this paper, we introduce our concrete bottleneck detection approach used in Elba, and then show its robustness and accuracy in various configurations scenarios. We utilize a well-known benchmark application, RUBiS (Rice University Bidding System), to evaluate the classifier with respect to successful identification of different bottlenecks.


Bottleneck detection statistical analysis enterprise systems perforance analysi 


  1. 1.
    Brockwell, P., Davis, A.: Introduction to Time Series and Forecasting. Springer Inc., New York (1996)CrossRefzbMATHGoogle Scholar
  2. 2.
    Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel, W.: Performance comparison of middleware architectures for generating dynamic Web content. Middleware (2003)Google Scholar
  3. 3.
    Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.: Correlating instrumentation data to system states: A building block for automated diagnosis and control. In: OSDI 2004 (2004)Google Scholar
  4. 4.
    Jung, G., Swint, G., Parekh, J., Pu, C., Sahai, A.: Detecting Bottlenecks in n-Tier IT Applications through Analysis. In: State, R., van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006. LNCS, vol. 4269, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Powers, R., Goldszmidt, M., Cohen, I.: Short Term Performance Forecasting in Enterprise Systems. In: KDD 2005 (2005)Google Scholar
  6. 6.
    Pu, C., Sahai, A., Parekh, J., Jung, G., Bae, J., Cha, Y., Garcia, T., Irani, D., Lee, J., Lin, Q.: Observation-Based Approach to Performance Characterization of Distributed n-Tier Applications (submitted for publication)Google Scholar
  7. 7.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  8. 8.
    Raghavachari, M., Reimer, D., Johnson, R.D.: The Deployer’s Problems: Configuring Application Servers for Performance and Reliability. In: ICSE 2003 (2003)Google Scholar
  9. 9.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic Provisioning of Multi-tier Internet Applications. In: ICAC 2005 (2005)Google Scholar
  10. 10.
    Wu, C., Hamada, M.: Experiments: Planning, Analysis, and Parameter Design Optimization. Wiley & Sons Inc., New York (2000)zbMATHGoogle Scholar
  11. 11.
  12. 12.
  13. 13.

Copyright information

© IFIP International Federation for Information Processing 2007

Authors and Affiliations

  • Simon Malkowski
    • 1
  • Markus Hedwig
    • 1
  • Jason Parekh
    • 1
  • Calton Pu
    • 1
  • Akhil Sahai
    • 2
  1. 1.CERCS, Georgia Institute of Technology, 266 Ferst Drive, Atlanta, GA 30332USA
  2. 2.HP Laboratories, Palo-Alto, CAUSA

Personalised recommendations