Skip to main content

Humanizing Bone Marrow in Immune-Deficient Mice

  • Chapter
  • 1570 Accesses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 324))

Humanized mice are useful for studying human hematopoietic stem cells (HSCs) and their niche. In particular, clonal study of human HSC enables precise comparison of in vivo behavior between murine and human HSCs. A single HSC is able to reconstitute hematopoiesis even after serial transplantations in mice. While the life span of somatic cells is over that of individual in mice, this is not the case in humans. Clonal studies of human HSCs clearly demonstrated their aging in hosts. Since murine studies have demonstrated that HSCs are protected from aging by their niche in bone marrow, the humanizing niche model will reveal the precise mechanism by which human HSCs are protected from exhaustion in vivo. Direct transplantation of human mesenchymal stem cells into mouse bone marrow results in reconstitution of the functional human hematopoietic microenvironment comprised of pericytes, myofibroblasts, reticular cells, osteocytes in bone, bone-lining osteoblasts, and endothelial cells. These humanized mouse models are essential for testing whether the insights on hematopoiesis from mouse studies are applicable to humans before clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abkowitz JL, Golinelli D, Harrison DE, Guttorp P. In vivo kinetics of murine hematopoietic stem cells. Blood 2000; 96:3399–3405.

    PubMed  CAS  Google Scholar 

  2. Ailles L, Schmidt M, Santoni de Sio FR, Glimm H, Cavalieri S, Bruno S, Piacibello W, Von Kalle C, Naldini L. Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Mol Ther 2002; 6:615–626.

    Article  PubMed  CAS  Google Scholar 

  3. Arai F, Hirao A, Ohmura M et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118:149–161.

    Article  PubMed  CAS  Google Scholar 

  4. Bensidhoum M, Chapel A, Francois S et al. Homing of in vitro expanded Stro-1− or Stro-1+ human mesenchymal stem cells into the NOD/SCID mouse and their role in supporting human CD34 cell engraftment. Blood 2004;103:3313–3319.

    Article  PubMed  CAS  Google Scholar 

  5. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94:5320–5325.

    Article  PubMed  CAS  Google Scholar 

  6. Bhatia M et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 1997; 186:619–624.

    Article  PubMed  CAS  Google Scholar 

  7. Bhatia M et al. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998; 4:1038–1045.

    Article  PubMed  CAS  Google Scholar 

  8. Borrello MA, Phipps RP. The B/macrophage cell: an elusive link between CD5+ B lymphocytes and macrophages. Immunol Today 1996; 17:471–475.

    Article  PubMed  CAS  Google Scholar 

  9. Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425:841–846.

    Article  PubMed  CAS  Google Scholar 

  10. Cashman J, Clark-Lewis I, Eaves A, Eaves C. Stromal-derived factor 1 inhibits the cycling of very primitive human hematopoietic cells in vitro and in NOD/SCID mice. Blood 2002; 99:792–799.

    Article  PubMed  CAS  Google Scholar 

  11. Charbord P, Tavian M, Humeau L, Peault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Blood 1996; 87:4109–4119.

    PubMed  CAS  Google Scholar 

  12. Christopherson KW, Hangoc G, Mantel CR, Broxmeyer HE. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305:1000–1003.

    Article  PubMed  CAS  Google Scholar 

  13. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999; 181:67–73.

    Article  PubMed  CAS  Google Scholar 

  14. Cumano A, Paige CJ, Iscove NN, Brady G. Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 1992; 356:612–615.

    Article  PubMed  CAS  Google Scholar 

  15. Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M, Takatsu K, Takaki S, Nakauchi H. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and lnk-deficient mice. Dev Cell 2005; 8:907–914.

    Article  PubMed  CAS  Google Scholar 

  16. Glimm H, Eisterer W, Lee K, Cashman J, Holyoake TL, Nicolini F, Shultz LD, von Kalle C, Eaves CJ. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 2001; 107:199–206.

    Article  PubMed  CAS  Google Scholar 

  17. Goldschneider I, Komschlies KL, Greiner DL. Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J Exp Med 1986; 163:1–17.

    Article  PubMed  CAS  Google Scholar 

  18. Guenechea G, Gan OI, Dorrell C, Dick JE. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat Immunol 2001; 2:75–82.

    Article  PubMed  CAS  Google Scholar 

  19. Hiramatsu H, Nishikomori R, Heike T, Ito M, Kobayashi K, Katamura K, Nakahata T, Complete reconstitution of human lymphocytes from cord blood CD34+ cells using the NOD/SCID/gammacnull mice model. Blood 2003; 102:873–880.

    Article  PubMed  CAS  Google Scholar 

  20. Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc Natl Acad Sci USA 2002; 99:413–418.

    Article  PubMed  CAS  Google Scholar 

  21. Hou YH, Srour EF, Ramsey H, Dahl R, Broxmeyer HE, Hromas R. Identification of a human B-cell/myeloid common progenitor by the absence of CXCR4. Blood 2005; 105:3488–3492.

    Article  PubMed  CAS  Google Scholar 

  22. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T. NOD/SCID/γc null mouse: an excellent recipient mouse model for engraftment of human cells. Blood 2002; 100:3175–3182.

    Article  PubMed  CAS  Google Scholar 

  23. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Exp Hematol 2004; 32:414–425.

    Article  PubMed  CAS  Google Scholar 

  24. Kawada H, Fujita J, Kinjo K et al. Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 2004; 104:3581–3587.

    Article  PubMed  CAS  Google Scholar 

  25. Kiel M, Ylimaz OH, Iwashita T, Ylimaz OH, Terhorst D, and Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121:1109–1121.

    Article  PubMed  CAS  Google Scholar 

  26. Koc ON, Gerson SL, Cooper BW et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18:307–316.

    PubMed  CAS  Google Scholar 

  27. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T, Moritz T, Murdoch B, Xiao XL, Kato I, Williams DA, Dick JE. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  28. Lemischka IR, Raulet DH, Mulligan RC. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 1986; 45:917–972.

    Article  PubMed  CAS  Google Scholar 

  29. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176:57–66.

    Article  PubMed  CAS  Google Scholar 

  30. Matsuzaki Y, Kinjo K, Mulligan RC, Okano H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 2004; 20:87–93.

    Article  PubMed  CAS  Google Scholar 

  31. Mazurier F, Doedens M, Gan OI, Dick JE. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat Med 2003; 9:959–963.

    Article  PubMed  CAS  Google Scholar 

  32. Mckenzie JI, Gan OI, Doedens M, Wang JCY, Dick JE. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 2006; 11:1225–1233.

    Article  Google Scholar 

  33. Miyoshi H, Smith KA, Moiser DE, Verma IM, and Torbett BE. Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science 1999; 283:682.

    Article  PubMed  CAS  Google Scholar 

  34. Montecino-Rodriguez E, Leathers H, Dorshkind K. Bipotential B-macrophage progenitors are present in adult bone marrow. Nat Immunol 2001; 2:83–88.

    Article  PubMed  CAS  Google Scholar 

  35. Muguruma Y, Yahata T, Miyatake H, Sato T, Uno T, Itho J, Itho M, Kato S, Hotta T, Ando K. Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment. Blood 2006; 107:1878–1887.

    Article  PubMed  CAS  Google Scholar 

  36. Nilsson SK, Johnston HM, Whitty GA et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106:1232–1239.

    Article  PubMed  CAS  Google Scholar 

  37. Nolta JA, Dao MA, Wells S, Smogorzewska EM, Kohn DB. Transduction of pluripotent human hematopoietic stem cells demonstrated by clonal analysis after engraftment in immune-deficient mice. Proc Natl Acad Sci USA 1996; 93:2414–2419.

    Article  PubMed  CAS  Google Scholar 

  38. Noort WA, Kruisselbrink AB, in ‘t Anker PS et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 2002; 30:870–878.

    Google Scholar 

  39. Osawa M, Hanada K, Hamada H, Nakauchi H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242–245.

    Article  PubMed  CAS  Google Scholar 

  40. Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283:845–848.

    Article  PubMed  CAS  Google Scholar 

  41. Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284:143–147.

    Article  PubMed  CAS  Google Scholar 

  42. Ponomaryov T, Peled A, Petit I et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106:1331–1339.

    Article  PubMed  CAS  Google Scholar 

  43. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276:71–74.

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt M, Hoffmann G, Wissler M, Lemke N, Mussig A, Glimm H, Williams DA, Ragg S, Hesemann CU, von Kalle C. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther 2001; 12:743–749.

    Article  PubMed  CAS  Google Scholar 

  45. Shultz LD et al. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 1995; 154:180–191.

    PubMed  CAS  Google Scholar 

  46. Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 2005; 174:6477–6489.

    PubMed  CAS  Google Scholar 

  47. Stier S, Ko Y, Forkert R et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201:1781–1791.

    Article  PubMed  CAS  Google Scholar 

  48. Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2005; 25:977–988.

    Article  Google Scholar 

  49. van der Loo JC et al. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse as a model system to study the engraftment and mobilization of human peripheral blood stem cells. Blood 1998; 92:2556–2570.

    PubMed  Google Scholar 

  50. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 2002; 297:2256–2259.

    Article  PubMed  CAS  Google Scholar 

  51. Westen H, Bainton DF. Association of alkaline-phosphatase-positive reticulum cells in bone marrow with granulocytic precursors. J Exp Med 1979; 150:919–937.

    Article  PubMed  CAS  Google Scholar 

  52. Yahata T, Ando K, Nakamura Y, Ueyama Y, Shimamura K, Tamaoki N, Kato S, Hotta T. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor gamma null mice. J Immunol 2002; 169:204–209.

    PubMed  CAS  Google Scholar 

  53. Yahata T, Ando K, Sato T et al. A highly sensitive strategy for SCID-repopulating cell assay by direct injection of primitive human hematopoietic cells into NOD/SCID mice bone marrow. Blood 2003; 101:2905–2913.

    Article  PubMed  CAS  Google Scholar 

  54. Yahata T, Yumino S, Sheng Y, Miyatake H, Uno T, Muguruma Y, Ito M, Miyoshi H, Kato S, Hotta T, and Ando K. Clonal analysis of thymus-repopulating cells presents direct evidence for self-renewal division of human hematopoietic stem cells. Blood 2006; 108:2446–2454.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang J, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425:836–841.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ando, K., Muguruma, Y., Yahata, T. (2008). Humanizing Bone Marrow in Immune-Deficient Mice. In: Nomura, T., Watanabe, T., Habu, S. (eds) Humanized Mice. Current Topics in Microbiology and Immunology, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75647-7_4

Download citation

Publish with us

Policies and ethics