Skip to main content

Hydrogels for Actuators

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

In microsystem technology research a material with such a diversity and significance like silicon in microelectronics has not been established for the last 20 years. Recently in microfluidics and in special imaging systems hydrogels get ready to take this place. Here we present a review on hydrogel based microsystems with actuator or sensor-actuator functionalities. Automatic microfluidic systems based on the sensor-actuator properties of hydrogels offer functionalities which have not been yet realised with other systems or actuators. The functional principles of the basic elements are described on the example of hydrodynamic transistors, pumps and tunable microlenses. In the field of microelectromechanical microfluidic systems hydrogels provide a unique multi-functionality. We describe the basic principles applied on an electronic control for hydrogel actuators and also on the basic components for microfluidics: microvalve, micropump and hydrodynamic transistors. Furthermore, the first hydrogel-based highly integrated microsystem, a high-resolution tactile display containing 4,225 individually controllable actuator pixels, is reviewed. In the last two Sections we discuss essential physical phenomena und design rules, which have to be considered to avoid malfunctions of the designed devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this chapter the sensor-actuator functionality is sometimes described as actuator according to terms used in the literature. Please note that a sensor-actuator transforms non-mechanical energy into mechanical energy, whereas an actuator is typically controlled by electrics or electronics.

Abbreviations

LCST:

Lower critical solution temperature

MBAAm:

N, N´-methylenebis(acrylamide)

NC:

Normally closed

NO:

Normally open

n.s.:

Not specified

PCR:

Polymerase chain reaction

PNIPAAm:

Poly(N-isopropylacrylamide)

A C :

Cross-section area of channel

c Alcohol :

Content of alcohol in aqueous solution

c EtOH :

Content of ethanol in aqueous solution

c Glucose :

Content of glucose in aqueous solution

c HxOH :

Content of hexanol in aqueous solution

c MeOH :

Content of methanol in aqueous solution

c NaCl :

Content of sodium chloride in aqueous solution

c PrOH :

Content of 1-propanol in aqueous solution

d :

Valve chamber length

d A :

Effective diffusion way of a bulk actuator

pH:

pH value

pk a :

pk value of acid

r P :

Particle radius

T :

Temperature

T g :

Glass transition temperature

T t :

Volume phase transition temperature

T Control :

Control temperature of hydrodynamic transistor

t:

Time

V :

Swollen volume of hydrogel

V 0,V dry :

dry volume of hydrogel

V C :

Valve chamber volume

V Gel :

Bulk volume of dry hydrogel particles

x:

Distance

Δd :

Difference of valve chamber length

ΔpH:

Difference of pH value

ΔT :

Temperature difference

Δx :

Displacement

Δd :

Difference of valve chamber length

ΔpH:

Difference of pH value

ΔT :

Temperature difference

Δx :

Displacement

λ:

Wavelength of light

References

  • Arndt KF, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler HJ (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work and transition point. Acta Polym 50:383–390

    Article  Google Scholar 

  • Arndt KF, Kuckling D, Richter A (2000) Application of sensitive hydrogels in flow control. Polym Adv Technol 11:496–505

    Article  Google Scholar 

  • Arndt KF, Schmidt T, Reichelt R (2001) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy irradiation. Polymer 42:6785–6791

    Article  Google Scholar 

  • Baldi A, Gu Y, Loftness PE, Siegel RA, Ziaie B (2003) A hydrogel-actuated environmentally sensitive microvalve for active flow control. J Microelectromech Syst 12:613–621

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  • Chen G, Svec F, Knapp DR (2008) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8:1198–1204

    Article  Google Scholar 

  • Dittrich PS, Manz A (2006) Lab on a chip: microfluidics in drug discovery. Nature Rev Drug Disc 5:210–218

    Article  Google Scholar 

  • Dittrich PS, Tachikawa K, Manz A (2006) Micro total analysis systems. Latest advancements and trends. Anal Chem 78:3887–3907

    Google Scholar 

  • Dong L, Agarwal AK, Beebe DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    Article  Google Scholar 

  • Dong L, Agarwal AK, Beebe DJ, Jiang H (2007) Variable-focus liquid microlenses and microlens arrays actuated by thermoresponsive hydrogels. Adv Mater 19:401–405

    Article  Google Scholar 

  • Eddington DT, Beebe DJ (2004) A valved responsive hydrogel microdispensing device with integrated pressure source. J Microelectromech Syst 13:586–593

    Article  Google Scholar 

  • Ehrick JD, Stokes S, Bachas-Daunert S, Moschou EA, Deo SK, Bachas LG, Daunert S (2007) Chemically tunable lensing of stimuli-responsive hydrogel microdomes. Adv Mater 19:4024–4027

    Article  Google Scholar 

  • Gast FU, Dittrich PS, Schwille P, Weigel M, Mertig M, Opitz J, Queitsch U, Diez S, Lincoln B, Wottawah F, Schinkinger S, Guck J, Käs J, Smolinski J, Salchert K, Werner C, Duschl C, Jäger MS, Uhlig K, Geggier P, Howitz S (2006) The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology. Microfluid Nanofluid 2:21–36

    Article  Google Scholar 

  • Gerlach G, Günther M, Sorber J, Suchaneck G, Arndt KF, Richter A (2005) Chemical and pH sensors based on the swelling behavior of hydrogels. Sens Actuat B 111–112:555–561

    Article  Google Scholar 

  • Good BT, Bowman CN, Davis RH (2007) A water-activated pump for portable microfluidic applications. J Colloid Interface Sci 305:239–249

    Article  Google Scholar 

  • Haeberle S, Zengerle R (2007) Microfluidic platforms for lab-on-a-chip applications. Lab Chip 7:1094–1110

    Article  Google Scholar 

  • Harmon ME, Tang M, Frank CW (2003) A microfluidic actuator based on thermoresponsive hydrogels. Polymer 44:4547–4556

    Article  Google Scholar 

  • http://www.fluidigm.com/products/biomark-chips.html, date: 25.06.2008

    Google Scholar 

  • Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442:374–380

    Article  Google Scholar 

  • Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y (1998) Totally synthetic polymer gels responding to external glucose concentration: their preparation and application to on-off regulation of insulin release. J Am Chem Soc 120:12694–12695

    Article  Google Scholar 

  • Kim D, Beebe DJ (2007) A bi-polymer micro one-way valve. Sens Actuat A 136:426–433

    Article  Google Scholar 

  • Kim J, Serpe MJ, Lyon LA (2004) Hydrogel microparticles as dynamically tunable microlenses. J Am Chem Soc 126:9512–9513

    Article  Google Scholar 

  • Kim J, Nayak S, Lyon LA (2005a) Bioresponsive hydrogel microlenses. J Am Chem Soc 127:9588–9592

    Article  Google Scholar 

  • Kim J, Serpe MJ, Lyon LA (2005b) Photoswitchable microlens arrays. Angew Chem Int Ed 44:1333–1336

    Article  Google Scholar 

  • Kuckling D, Arndt KF, Richter A (2003) Temperature and pH dependent swelling behavior of poly(N-isopropylacrylamide)-copolymer hydrogels and their use in flow control. Macromol Mater Eng 288:144–151

    Article  Google Scholar 

  • Kuhn W, Hargitay B (1951) Muskelähnliche Arbeitsleistung künstlicher hochpolymerer Stoffe. Z f Elektrochemie 55:490–502

    Google Scholar 

  • Kuhn W, Künzle O, Katchalsky A (1948) Denouement de molecules en chaines polyvalentes par des charges electriques en solution. Bull Soc Chim Belg 57:421–431

    Article  Google Scholar 

  • Kurauchi T, Shiga T, Hirose Y, Okada A (1991) Deformation behaviors of polymer gels in electric field. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 2

    Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Li W, Zhao H, Teasdale PR, John R, Zhang S (2002) Synthesis and characterisation of a polyacrylamide-polyacrylic acid copolymer hydrogel for environmental analysis of Cu and Cd. React Funct Polym 52:31–41

    Article  Google Scholar 

  • Liu RH, Yu Q, Beebe DJ (2002) Fabrication and characterization of hydrogel-based microvalves. J Microelectromech Syst 11:45–53

    Article  Google Scholar 

  • Liu C, Park JY, Xu Y, Lee SH (2007) Arrayed pH-responsive microvalves controlled by multiphase laminar flow. J Micromech Microeng 17:1985–1991

    Article  Google Scholar 

  • Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003a) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702

    Article  Google Scholar 

  • Luo Q, Mutlu S, Gianchandani YB, Svec F, Fréchet JMJ (2003b) Monolithic valves for microfluidic chips based on thermoresponsive polymer gels. Electrophoresis 24:3694–3702

    Article  Google Scholar 

  • Mitsumata T, Ikeda K, Gong JP, Osada Y (1998) Solvent-driven chemical motor. Appl Phys Lett 73:2366–2368

    Article  Google Scholar 

  • Mitsumata T, Ikeda K, Gong JP, Osada Y (2000) Controlled motion of solvent-driven gel motor and its application as a generator. Langmuir 16:307–312

    Article  Google Scholar 

  • Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769

    Article  Google Scholar 

  • Nguyen NT, Huang X, Chuan TK (2002) MEMS-micropumps: a review. Transact ASME 124:384–392

    Google Scholar 

  • Osada Y, Gong JP (1998a) Soft and wet materials: Polymer gels. Adv Mater 10:827–837

    Article  Google Scholar 

  • Osada Y, Gong JP (1998b) Soft and wet materials: Polymer gels. Adv. Mater. 10:827–837

    Article  Google Scholar 

  • Osada Y, Takeuchi Y (1981) Water and protein permeation through polymeric membrane having mechanochemically expanding and contracting pores - Function of chemical valve-. J Polym Sci, Polym Lett Ed 19:303–308

    Article  Google Scholar 

  • Park JY, Oh HJ, Kim DJ, Baek JY, Lee SH (2006) A polymeric microfluidic valve employing a pH-responsive hydrogel microsphere as an actuating source. J Micromech Microeng 16:656–663

    Article  Google Scholar 

  • Peters EC, Svec F, Frechét JMJ (1997) Thermally responsive rigid polymer monoliths. Adv Mater 9:630–633

    Article  Google Scholar 

  • Richter A (2006) Hydrogel-based µTAS. In C.T. Leondes: MEMS/NEMS Handbook: Techniques and Applications. Vol. 2: Fabrication Techniques, Chapter 5, Springer, New York

    Google Scholar 

  • Richter A, Paschew G (2009) Optoelectrothermic control of polymer-based highly integrated MEMS applied in an artificial skin. Adv Mater 21:979–983

    Article  Google Scholar 

  • Richter A, Arndt KF, Krause W, Kuckling D, Howitz S (2001) Devices for flow control based on smart hydrogels. 7th Pacific polymer Conference, Oaxaca, Dec 3–7, 2001, p. 312

    Google Scholar 

  • Richter A, Kuckling D, Howitz S, Gehring T, Arndt KF (2003) Electronically controllable microvalves based on smart hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753

    Article  Google Scholar 

  • Richter A, Klenke C, Arndt KF (2004a) Adjustable low dynamic pumps based on hydrogels. Macromol Symp 210:377–384

    Article  Google Scholar 

  • Richter A, Howitz S, Kuckling D, Arndt KF (2004b) Influence of volume phase transition phenomena on the behaviour of hydrogel-based valves. Sens Actuat B 99:451–458

    Article  Google Scholar 

  • Richter A, Krause W, Lienig J, Arndt KF (2005) Polymer networks as actuator and sensor systems to be used for automation of biomedical devices. Biomed Technik 50:66–68

    Article  Google Scholar 

  • Richter A, Türke A, Pich A (2007a) Controlled double-sensitivity of microgels applied to electronically adjustable chemostats. Adv Mater 19:1109–1112

    Article  Google Scholar 

  • Richter A, Wenzel J, Kretschmer K (2007b) Mechanically adjustable chemostats based on stimuli-responsive polymers. Sens Actuat B 125:569–573

    Article  Google Scholar 

  • Richter A, Klatt S, Paschew G, Klenke C (2009a) Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9:613–618

    Article  Google Scholar 

  • Richter A, Paschew G, Klatt S, Lienig J, Arndt KF, Adler HJ (2008b) Review on hydrogel-based pH sensors and microsensors. Sensors 8:561–581

    Article  Google Scholar 

  • Sershen SR, Mensing GA, Ng M, Halas NJ, Beebe DJ, West JL (2005) Independent optical control of microfluidic valves formed from optomechanically responsive nanocomposite hydrogels. Adv Mater 17:1366–1368

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics towards a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Sugiura S, Sumaru K, Ohi K, Hiroki K, Takagi T, Kanamori T (2007) Photoresponsive polymer gel microvalves controlled by local light irradiation. Sens Actuat A 140:176–184

    Article  Google Scholar 

  • Suzuki M (1991) Amphoteric poly(vinyl alcohol) hydrogel and electrodynamic control method for artificial muscles. In: D. DeRossi, K. Kajiwara, Y. Osada, A. Yamauchi (ed): Polymer gels: Fundamentals and biomedical applications. Plenum Press New York, 221-236

    Google Scholar 

  • Suzuki A, Suzuki H (1995) Hysteretic behavior and irreversibility of polymer gels by pH change. J Chem Phys 103:4706–4710

    Article  Google Scholar 

  • Suzuki A, Tanaka T (1990) Phase-transition in polymer gels induced by visible-light. Nature 346:345–347

    Article  Google Scholar 

  • Suzuki H, Tokuda T, Kobajashi K (2002) A disposable “intelligent mosquito” with a reversible sampling mechanism using the volume-phase transition of a gel. Sens Actuat B 83:53–59

    Article  Google Scholar 

  • Tanaka T (1978) Collapse of gels and critical endpoint. Phys Rev Lett 40:820–823

    Article  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  Google Scholar 

  • Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469

    Article  Google Scholar 

  • Theeuwes F, Yum SI (1976) Principles of the design and operation of generic osmotic pumps for the delivery of semisolid or liquid drug formulations. Annals Biomed Eng 4:343–353

    Article  Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Wang J, Chen Z, Mauk M, Hong KS, Li M, Yang S, Bau1 HH (2005) Self-actuated, thermo-responsive hydrogel valves for lab on a chip. Biomed Microdev 7: 313–322

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wünschmann W, Richter A, Dierigen HJ, Howitz, S, Kuckling D, Keller, M, Arndt KF, Taktile Anzeigeeinheit. German Patent Application DE 102 26 746.4, filing date 14/06/2002

    Google Scholar 

  • Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003a) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961

    Article  Google Scholar 

  • Yu C, Mutlu S, Selvaganapathy P, Mastrangelo CH, Svec F, Fréchet JMJ (2003b) Flow control valves for analytical microfluidic chips without mechanical parts based on thermally responsive monolithic polymers. Anal Chem 75:1958–1961

    Article  Google Scholar 

  • Zhang Y, Kato S, Anazawa T (2008) A microchannel concentrator controlled by integral thermoresponsive valves. Sens Actuat B 129:481–486

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support for this work from the Deutsche Forschungsgemeinschaft (Collaborative Research Centre SFB 287 “Reactive Polymers”, Heisenberg fellowship). G. Paschew is thanked for carefully proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Richter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, A. (2009). Hydrogels for Actuators. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics