Skip to main content

Hydrogels for Biosensors

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

Hydrogels are valuable materials for use in biosensors. They can be used for immobilization as well as for creating protecting layers controlling diffusion and enhancing biocompatibility. Highly stable biosensors use hydrogels for entrapment of enzymes on microelectrodes. The stability of enzymes in hydrogel membranes for biosensors can be enhanced by choosing the right microenvironment using micro-hydrogels. The thermodynamic stability of the entrapped enzymes in micro-gels can be characterized via differential scanning calorimetry (nano-DSC). Hydrogel-based biosensors were characterized by nano-DSC showing that hydrogel membranes are excellent for creating long-term stable enzyme biosensors. Additionally, smart hydrogels can be used as stimuli responsive materials enabling sensing as well as actuating performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3D:

Three dimensional

AA:

Acrylamid

BIS:

N,N´-methylene bisacrylamide

bipy:

2,2´-Bipyridine

CaM:

Calmoduline

Co:

Cobalt

CPZ:

Chlorpromazine

DSC:

Dynamic scanning calorimetry

FAD:

Flavine adenine dinucleotide

GndHCl:

Guanidinium hydrochloride

GOx:

Glucose oxidase

HEMA:

Hydroxyethyl methacrylate

LC:

Liquid crystal

Medox :

Electrochemical active mediator (oxidized form)

MEMS:

Micro electro mechanical systems

N:

Number of electrons

Os:

Osmium

PAAm:

Poly(acrylamide)

PBS:

Phosphate buffered saline

PCB:

Printed circuit board

PDMS:

Poly(dimethylsiloxan)

PECVD:

Plasma enhanced chemical vapour deposition

PEG-3000:

Poly(ethylene glycol) of molecular weight 3000 g/mol

pHEMA:

Poly(hydroxyethyl methacrylate)

PVA:

Poly(vinyl alcohol)

Ru:

Ruthenium

TEGDMA:

triethylene glycol dimethacrylate

TEMED:

N,N,N′,N′-tetramethyl ethylenediamine

vinpy:

4-Vinylpyridine

A :

Electrode area

c s :

Analyte concentration

D S :

Diffusion coefficient of analyte s

δN :

Nernst layer thickness

Δ DN G :

Free energy of denatutration

Δ DN H :

Enthalpy of denatutration

Δ DN S :

Entropy of denatutration

Δ DN C :

Heat capacity of denatutration

F:

Faraday constant

I d :

Diffusional current

N :

Number of electrons

T :

Temperature

T m :

Denaturation temperature

References

  • Abruna HD (1988) Coordination chemistry in two dimensions: chemically modified electrode. Coord Chem Rev 86:135–189

    Article  Google Scholar 

  • Alexeev VL, Das S, Finegold DN, Asher SA (2004) Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 50(12):2353–2360

    Article  Google Scholar 

  • Allcock HR, Phelps MVB, Barrett EW, Pishko MV, Koh WG (2006) Ultraviolet photolithographic development of polyphosphazene hydrogel microstructures for potential use in microarray biosensors. Chem Mater 18(3):609–613

    Article  Google Scholar 

  • Angenendt P, Glokler J, Konthur Z, Lehrach H, Cahill DJ (2003) 3D protein microarrays: performing multiplex immunoassays on a single chip. Anal Chem 75(17):4368–4372

    Article  Google Scholar 

  • Applegate BM, Kehrmeyer SR, Sayler GS (1998) A chromosomally based tod-luxCDABE whole-cell reporter for benzene, toluene, ethybenzene, and xylene (BTEX) Sensing. Appl Environmental Microbiol 64(7):2730–2735

    Google Scholar 

  • Asberg P, Inganas O (2003) Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode. Biosens Bioelectron 19(3):199–207

    Article  Google Scholar 

  • Bakker E (2004) Electrochemical sensors. Anal Chem 76(12):3285–3298

    Article  Google Scholar 

  • Barsky VE, Glokler J, Konthur Z, Lehrach H, Cahill DJ (2003) Biological microchips with hydrogel – immobilized nucleic acids, proteins, and other compounds: properties and applications in genomics. Mol Biol 36:437–455

    Article  Google Scholar 

  • Bashir R (2004) BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv Drug Deliv Rev. 56(11):1565–1586

    Article  Google Scholar 

  • Becktel WJ, Schellman JA (1987) Protein stability curves. Biopolymers 26(11):1859–1877

    Article  Google Scholar 

  • Bjerketorp J, Håkansson S, Belkin S, Jansson J (2006) Advances in preservation methods: keeping biosensor microorganisms alive and active. Curr Opin Biotechnol 17(1):43–49

    Article  Google Scholar 

  • Bousse L (1996) Whole cell biosensors. Sens Act B 34:270–275

    Article  Google Scholar 

  • Bozukova D, Pagnoulle C, De Pauw-Gillet MC, Ruth N, Jérôme R, Jérôme C (2008) Imparting antifouling properties of poly (2-hydroxyethyl methacrylate) hydrogels by grafting poly (oligoethylene glycol methyl ether acrylate). Langmuir 24(13):6649–6658

    Article  Google Scholar 

  • Brahim S, Narinesingh D, Guiseppi-Elie A (2002) Bio-smart hydrogels: co-joined molecular recognition and signal transduction in biosensor fabrication and drug delivery. Biosens Bioelectron 17(11–12):973–981

    Article  Google Scholar 

  • Burnham MR, Turner JN, Szarowski D, Martin DL (2006) Biological functionalization and surface micropatterning of polyacrylamide hydrogels. Biomaterials 27(35):5883–5891

    Article  Google Scholar 

  • Cass AGE et al (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56(4):667–671

    Article  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    Article  Google Scholar 

  • Chancellor EB, Wikswo JP, Baudenbacher F (2004) Heat conduction calorimeter for massively parallel high throughput measurements wit picoliter sample volumes. Appl Phys Let 85:2408–2410

    Article  Google Scholar 

  • Chateau E, Garden JL, Bourgeois O, Chaussy J (2005) Physical kinetics and thermodynamics of phase transitions probed by dynamic nanocalorimetry. Appl Phys Let 86:151913

    Article  Google Scholar 

  • Chen T, Binyami G, Schmittke K, Friedman K, Heller A (2001) In vivo glucose monitoring with miniature "wired" glucose oxidase electrodes. Anal Sci 17:i297–i300

    Article  Google Scholar 

  • Clark LC, Leland C, Lyons P, Champ P (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45

    Article  Google Scholar 

  • Clark C, Moves T, Grooms P, Moore P (1984) Direct rapid electroenzymatic sensor for measuring alcohol in whole blood and fermentation products. Ann N Y Acad Sci 434(1):515–519

    Article  Google Scholar 

  • Cushing MS, Anseth KS (2007) Hydrogel cell cultures. Science 316:1133–1134

    Article  Google Scholar 

  • Dong L, Agarwal AK, Bebee DJ, Jiang H (2006) Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442:551–554

    Article  Google Scholar 

  • Ehrick JD, Stokes S, Bacgas-Daunert S, Moshou EA, Deo SK, Bachas LG, Daunert S (2007) Chemically tunable lensing of stimuli-responsive hydrogel microdomes. Adv mat 19:4024–4027

    Article  Google Scholar 

  • Ek S (2004) Diabetes care: beyond meters and strips. Roche R&D Day http://www.roche.com/pages/downloads/investor/pdf/praesentations/irp050504rdd4.pdf

    Google Scholar 

  • Elad T, Lee J, Belkin S, Gu M (2008) Microbial whole-cell arrays. Microbial Biotechnology 1(2):137–148

    Article  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604

    Article  Google Scholar 

  • Ernst H (2001) Dissertation, Universität Freiburg.

    Google Scholar 

  • Fesenko DO, Nasedkina TV, Prokopenko DV, Mirzabekov AD (2005) Biosensing and monitoring of cell populations using the hydrogel bacterial microchip. Biosens Bioelectron 20(9):1860–1865

    Article  Google Scholar 

  • Fine T, Leskinen P, Isobe T, Shiraishi H, Morita M, Marks RS, Virta M (2006) Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens Bioelectron 21(12):2263–2269

    Article  Google Scholar 

  • Garden JL, Chateau E, Chaussy J (2004) Highly sensitive ac nanocalorimeter for mcroliter-scale liquids or biological samples. Appl Phys Let 84:3597–3599

    Article  Google Scholar 

  • Group TDCaCTR (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329(14):977–986

    Article  Google Scholar 

  • Guiseppi-Elie A, Brahim S I, Narinesingh D (2002) A chemically synthesized artificial pancreas: release of insulin from glucose-responsive hydrogels. Adv. Materials 14(10):743–746

    Google Scholar 

  • Heller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7(1):50–54

    Article  Google Scholar 

  • Heller A (2006) Electron-conducting redox hydrogels: design, characteristics and synthesis. Curr Opin Chem Biol 10(6):664–672

    Article  MathSciNet  Google Scholar 

  • Höhne GWH (2003) Cip-kalorimeter for small samples. Thermochimica Acta 403:43–53

    Article  Google Scholar 

  • Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389(6653):829–831

    Article  Google Scholar 

  • Itle L, Pishko M (2005) Multiphenotypic whole-cell sensor for viability screening. Anal Chem 77(24):7887–7893

    Article  Google Scholar 

  • Jägle M (2003) A fast and highly sensitive nano-calorimeter. Techn Mes 12:557–560

    Article  Google Scholar 

  • Jobst G, Moser I (2006) Smallest volume metabolic monitoring. In: Proceedings of the ninth congress of biosensors, Toronto, p 558

    Google Scholar 

  • Jobst G et al (1996a) Thin-film microbiosensors for glucose-lactate monitoring. Analy Chem 68(18):3173–3179

    Article  Google Scholar 

  • Jobst G, Moser I, Urban G (1996b) Numerical simulation of multi-layered enzymatic sensors. Biosensors and Bioelectronics 11(1–2):111–117

    Article  Google Scholar 

  • Jobst G, Svasek P, Moser I, Varahram M, Trajanoski P, Wach P, Kotanko P, Skrabal F, Urban G (1997) Mass producible miniaturized flow through device with biosensor array. Sens Act B 43:121–125

    Article  Google Scholar 

  • Johannessen EA, Weaver JMR, Cobbold PH, Cooper A (2002) A suspended membrane nanocalorimeter for ultralow volume bioanalysis. IEEE Trans Nanobiosci 1(1):29–36

    Article  Google Scholar 

  • Kaneko M, Wöhrle D (1988) Polymer coated electrodes: new materials for science and industry. Advances in Polymer Science, vol 84. Springer, Berlin, pp 141–228

    Google Scholar 

  • Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Ravi Kumar MNV (2007) Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin. Biomat 28(11):2051–2060

    Article  Google Scholar 

  • Kaufman FB, Schroeder AH, Engler EM, Kramer SR, Chambers JQ (1980) Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes. J Am Chem Soc 102(2):483–488

    Article  Google Scholar 

  • Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18(8):1015–1021

    Article  Google Scholar 

  • Kim J, Singh N, Lyon AL (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45(9):1446–1449

    Article  Google Scholar 

  • Kudela V (1987) Hydrogels in encyclopedia of polymer science and engineering, vol. 7. Wiley, NY, p 783

    Google Scholar 

  • Larsson A (2007) Photografted poly(ethylene glycol) matrix for affinity interaction studies. Biomacromolecules 8(1):287–295

    Article  Google Scholar 

  • Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568(1–2):200–220

    Article  Google Scholar 

  • Ligler FS (2006) Biosensors for detection of bioterrorist threats. In: Baldini F et al (eds) Optical chemical sensors NATO science series II, vol 224. Springer, Berlin, pp 437–455

    Google Scholar 

  • Moser I et al (1995) Miniaturized thin film glutamate and glutamine biosensors. Biosens Bioelectron 10(6–7):527–532

    Article  Google Scholar 

  • Moser I, Jobst G, Urban GA (2002) Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine. Biosens Bioelectron 17(4):297–302

    Article  Google Scholar 

  • Murray RW (1984) Electroanalytical Chemistry. In: Bard AJ (ed) vol. 13. Dekker, New York, p 191

    Google Scholar 

  • Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377(3):446–468

    Article  Google Scholar 

  • Olson EA, Efremov MY, Kwan AT, Lai S, Petrova V, Schiettekatte F, Warren JT, Zhang M, Allen LH (2000) Scanning calorimeter for nanoliter-scale liquid samples. Appl Phys Let 77:2671–2673

    Article  Google Scholar 

  • Park KS, Baumstark-Khan C, Rettberg P, Horneck G, Rabbow E, Gu MB (2005) Immobilization as a technical possibility for long-term storage of bacterial biosensors. Rad Environ Biophys 44(1):69–71

    Article  Google Scholar 

  • Petrou PS, Moser I, Jobst G (2002) BioMEMS device with integrated microdialysis probe and biosensor array. Biosens Bioelectron 17(10):859–865

    Article  Google Scholar 

  • Petrou PS, Moser I, Jobst G (2003) Microdevice with integrated dialysis probe and biosensor array for continuous multi-analyte monitoring. Biosens Bioelectron 18(5–6):613–619

    Article  Google Scholar 

  • Philp JC, Balmand S, Hajto E, Bailey MJ, Wiles S, Whiteley AS, Lilley AK, Hajto J, Dunbar SA (2003) Whole cell immobilised biosensors for toxicity assessment of a wastewater treatment plant treating phenolics-containing waste. Anal Chim Acta 487(1):61–74

    Article  Google Scholar 

  • Pollmann K H, Gerber M, Kost K M, Ochs M L, Walljing J, Bateson J, Kuhn L S, Han C A (1994) US Patent 5,288,636

    Google Scholar 

  • Polyak B, Geresh S, Marks RS (2004) Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromol 5(2):389–396

    Article  Google Scholar 

  • Rees DC, Robertson AD (2001) Some thermodynamic implications for the thermostability of proteins. Protein Sci 10(6):1187–1194

    Article  Google Scholar 

  • Strong ZA, Wang AW, McConaghy CF (2002) Hydrogel-actuated capacitive transducer for wireless biosensors. Biomed Microdevices 4(2):97–103

    Article  Google Scholar 

  • Thevenot DR, Toth K, Durst RA, Wilson GS (2001) Electrochemical biosensors: recommended definitions and classification. Biosens Bioelectron 16(1–2):121–131

    Article  Google Scholar 

  • Tirrell M, Kokkoli E, Biesalski M (2002) The role of surface science in bioengineered materials. Surf Sci 500:61–83

    Article  Google Scholar 

  • Trajanoski Z, Wach P, Gfrerer R, Jobst G, Urban G, Kotanko P, Skrabal F (1996) Portable device for continuous fractionated blood sampling and continuous ex vivo blood glucose monitoring. Biosens Bioelectron 11(5):479–487

    Article  Google Scholar 

  • Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56(11):1635–1647

    Article  Google Scholar 

  • Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and application. Oxford University Press, Oxford, p 770

    Google Scholar 

  • Ulijn RE, Bibi N, Jayawarna V, Thornton PD, Todd SJ, Mart RJ, Smith AM, Gough JE (2007) Bioresponsive hydrogels. Mater Today 10(4):40–48

    Article  Google Scholar 

  • Urban GA (2006) BioMEMS. In: Senturia SD (ed) Microsystems, vol.16. Springer, Dordrecht, NL

    Google Scholar 

  • Urban GA, Jobst G (1997) Biosensors with modified electrodes for in vivo and ex vivo applications. In: Scheller FW (ed) Frontiers in Biosensorics, vol II. Birkhäuser, Basel, pp 161–173

    Chapter  Google Scholar 

  • Urban G et al (1990) Thin-film electrodes for medical diagnosis. Biomed Tech 35 Suppl. 2:100–111

    Article  Google Scholar 

  • Urban G, Jobst G, Aschauer E, Tilado O, Svasek P, Varahram M (1994) Performance of integrated glucose and lactate thin film microbiosensors for clinical analyzers. Sens Act B 19(1–3): 592–596

    Article  Google Scholar 

  • Urban G, Moser I, Jobst G (1998) Technical microsystem monitoring for determination of metabolic parameters. Biomed Tech 43 Suppl.:184

    Google Scholar 

  • Wang L, Lin Q (2005) A polymer-based MEMS sensor for biocalorimetric measurements. In: Ninth international conference on miniaturized systems for chemistry and life sciences (microTAS 2005), Boston, MA

    Google Scholar 

  • Weiß T (2007) Dissertation, Universität Freiburg.

    Google Scholar 

  • Weiß T, Moser I, Igel G, Urban G A (2004) Scanning nano-calorimeter. Sensors Proceedings of IEEE, Wien, AT

    Google Scholar 

  • Weiß T, Igel G, and Urban G (2007) Chip-based scanning nano-calorimeter for protein stability analysis in biosensor membranes 1761-1764. In: Transducers: Solid-State Sensors, Actuators and Microsystems, Lyon, FR

    Google Scholar 

  • Wichterle O, Lim D (1960) Hydrophilic gels for biological use. Nature 185:117–118

    Article  Google Scholar 

  • Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20(12):2388–2403

    Article  Google Scholar 

  • Yu L, Urban G, Moser I, Jobst G, Gruber H (1995) Photolithographically patternable modified poly(HEMA) hydrogel membrane. Polymer Bull 35(6):759–765

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Urban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Urban, G.A., Weiss, T. (2009). Hydrogels for Biosensors. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics