Skip to main content

Modelling and Simulation of the Chemo-Electro-Mechanical Behaviour

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

Ionic polymer gels are attractive actuation materials with a great similarity to biological contractile tissues. They consist of a polymer network with bound charged groups and a liquid phase with mobile ions. Absorption and delivery of the solvent lead to a large change of volume. This swelling mechanism results from the equilibrium between different forces such as osmotic pressure forces, electrostatic forces and visco-elastic restoring forces and can be triggered by chemical (change of salt concentration or pH in the solution), thermal or electrical stimulation. In this chapter, an overview over different modelling alternatives for chemically and electrically stimulated electrolyte polymer gels in a solution bath are investigated. The modelling can be conducted on different scales in order to describe the various phenomena occurring in the gels. If only the global macroscopic behaviour is of interest, the statistical theory which can describe the global swelling ratio is sufficient. By refining the scale, the Theory of Porous Media (TPM) may be applied. This is a macroscopic continuum theory which is based on the theory of mixtures extended by the concept of volume fractions. By further refining, the mesoscopic coupled multi-field theory can be applied. Here, the chemical field is described by a convection-diffusion equation for the different mobile species. The electric field is obtained directly by solving the Poisson equation in the gel and solution domain. The mechanical field is formulated by the momentum equation. By investigating the structure on the micro scale, the Discrete Element (DE) method is predestined. In this model, the material is represented by distributed particles comprising a certain amount of mass; the particles interact mechanically with each other by a truss or beam network of massless elements. The mechanical behaviour, i.e. the dynamics of the system, is examined by solving the Newton's equations of motion while the chemical field, i.e. the ion movement inside the gel and from the gel to the solution, is described by diffusion equations for the different mobile particles. All four formulations can give chemical, possibly electrical and mechanical unknowns and all rely on the assumption of the concentration differences between the different regions of the gel and between gel and solution forming the osmotic pressure difference, which is a main cause for the mechanical deformation of the polyelectrolyte gel film.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

DE:

Discrete Element

FE:

Finite Element

FEM:

Finite Element Method

TPM:

Theory of Porous Media

b :

Body force vector

c :

Concentration

c fc :

Concentration of the fixed charges

C :

Elasticity tensor

D :

Diffusion constant

d :

Material-dependent swelling coefficient

D :

Dielectric displacement tensor

e :

Specific energy

E :

Elastic modulus, stiffness

E :

Electric field tensor

f :

Friction coefficient

F :

Faraday constant;

F :

= 96487 C- mol

F :

Free energy

i :

Current density

I :

Identity matrix

J s :

Jacobian of the solid

K :

Jacobian (matrix)

l :

Liquid

l :

Length

l gel :

Length of the gel

L :

Tensor of the deformation velocities

m :

Mass

m Pα :

Production term of the rotational momentum

M :

Moment

N :

Number

N b :

Number of bound species

N f :

Number of free species

n 1 :

Molar number of the solvent

p Pα :

Momentum production term

q :

Swelling (ratio)

q :

Heat flow

r :

Source term; Energy Supply due to external heat sources

R :

Gas constant; R = 8.3143 J/mol/K

R :

Residual, Jacobian (vector)

s :

Solid

s :

Structural factor

t :

Time

T :

Temperature

T :

Stress tensor

u :

Displacement vector

v :

Velocity vector (of the mixture)

V :

Volume

x :

Spatial coordinate

x i :

Spatial coordinate, spatial direction

z α :

Valence of the species α

Δ:

Difference

Δ:

Laplace operator

∇:

Divergence operator

α:

Species α

β:

Species β

ε0 :

Permittivity of free charge; ε0 = 8.854 10−12 As/(Vm)

ε r :

Dielectric constant

ε :

Strain tensor

\( \bar \varepsilon \) :

Prescribed strain (tensor)

φ:

Volume fraction

ϕβ :

Volume fraction of the component β

ϕ:

(rotation) Angle

γα :

Constituent

ν*:

Material parameter

χ:

Flory-Huggins interaction parameter

v 1 :

Molar volume of the solvent

π:

Osmotic pressure

Δπ:

Differential osmotic pressure

μ:

Mobility

ρ:

Mass density

ρα :

Partial density of the constituents γα

ρPα :

Mass (density) production term of the constituents γα

ρel :

Volume charge density

σ :

Stress tensor

Θ:

Moment of inertia

Ψ:

Electric potential

0:

Initial

1:

Solvent

I:

Node I

II:

Node II

+:

Positive, cation

−:

Negative, anion

A:

Anionic bound charges

B:

Bound

el:

Elastic

f:

Free, mobile

fc:

Fixed charge

g:

Gel

i:

Iteration number

Ion:

Ion

M:

Mixture, mixing

p:

Polymer

P:

Production

r:

Relative

s:

Solution

s:

Salt

α:

Counting index

β:

Counting index

β:

Index of the component

,i :

Spatial derivative,i = \( \partial /\partial {x_i} \)

References

  • Avci A (2008) Modellierung und Simulation elektroaktiver Polymere im Rahmen der Theorie poröser Medien. Master’s Thesis, Universität Stuttgart

    Google Scholar 

  • Bar-Cohen Y (2001) Electroactive Polymer (EAP) Actuators as Artificial Muscles - Reality, Potential, and Challenges, PM 98, ch. EAP History, Current Status, and Infrastructure, pp. 4-44, SPIE Press, Bellingham, WA, USA

    Google Scholar 

  • Bicanic B (2004) Discrete element methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of Computational Mechanics: Fundamentals. Wiley, New York, pp 311–337

    Google Scholar 

  • Bowen RM (1980) Incompressible porous media models by use of the theory of mixtures. Int J Engg Sci 18(9):1129–1148

    Article  MATH  Google Scholar 

  • Chiarelli P, Basser PJ, De Rossi D, Goldstein S (1992) The dynamics of a hydrogel strip. Biorheology 29(4):383–398

    Google Scholar 

  • Ehlers W (2002) Foundations of multiphasic and porous materials. In: Ehlers W, Bluhm J (eds) Porous media: theory. experiments and numerical applications, Springer, Berlin, pp 3–86

    Chapter  Google Scholar 

  • Ehlers W, Markert B, Acartürk A (2002) A continuum approach for 3-d finite viscoelastic swelling of charged tissues and gels. In: Mang A, Rammerstorfer FG, Eberhardsteiner J (eds) Proceedings of Fifth World Congress on Computational Mechanics, Vienna University of Technology 2002; International Association for Computational Mechanics

    Google Scholar 

  • Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross-linked polymers I. rubberlike elasticity. J Chem Phys 11:512–520

    Article  Google Scholar 

  • Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross-linked polymers II. swelling. J Chem Phys 11:521–526

    Article  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Günther M, Gerlach G, Wallmersperger T (2007) Modeling of nonlinear effects in pH-sensors based on polyelectrolytic hydrogels. In: Bar-Cohen Y (ed) Proceedings of the SPIE Electroactive Polymer Actuators and Devices, vol. 6524. p 652416f

    Google Scholar 

  • Gülch RW, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2000) Polyelectrolyte gels in an electric fields: a theoretical and experimental approach. In: Bar-Cohen Y (ed) Proceedings of the SPIE Electroactive Polymer Actuators and Devices, vol. 3987:193–202

    Google Scholar 

  • Gülch R W, Holdenried J, Weible A, Wallmersperger T, Kröplin B (2001) Electrochemical stimulation and control of electroactive polymer gels. In: Bar-Cohen Y (ed) Proceedings of the SPIE Electroactive Polymer Actuators and Devices, vol. 4329:328–334

    Google Scholar 

  • Herrmann HJ, Roux S (1990) Statistical models for the fracture of disordered media. Elsevier Science Publishers B.V, Amsterdam, The Netherlands

    Google Scholar 

  • Hrennikoff A (1941) Solution of problems of elasticity by the framework method. J Appl Mech 8(4):A169–A175

    MathSciNet  MATH  Google Scholar 

  • Johnson KL (2001) Contact mechanics. Cambridge University Press, UK

    Google Scholar 

  • Kunz W (2003) Mehrpasenmodell zur Beschreibung ionischer Gele im Rahmen der Theorie poröser Medien. Master's thesis, Universität Stuttgart

    Google Scholar 

  • Rička J, Tanaka T (1984) Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules 7:2917–2921

    Google Scholar 

  • Schröder UP, Oppermann W (1996) Properties of polyelectrolyte gels. In: Cohen Addad J P (ed.). Physical properties of polymeric gels, Wiley, pp 19–38

    Google Scholar 

  • Treloar LRG (1958) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  • Wallmersperger T (2003) Modellierung und Simulation stimulierbarer polyelektrolytischer Gele, Forschritt-Berichte VDI, Reihe 5: Grund- und Werkstoffe, Kunststoffe, VDI Verlag Düsseldorf

    Google Scholar 

  • Wallmersperger T, Kröplin B, Gülch RW (2004) Coupled chemo-electro-mechanical formulation for ionic polymer gels–numerical and experimental investigations. Mech Mater 36(5–6): 411–420

    Article  Google Scholar 

  • Wallmersperger T, Kröplin B, Holdenried J, Gülch RW (2001) Coupled multifield formulation for ionic polymer gels in electric fields. In: Bar-Cohen Y (ed) Proceedings of the SPIE Electroactive Polymer Actuators and Devices, vol 4329. SPIE, Newport Beach, USA, pp 264–275

    Google Scholar 

  • Wallmersperger T, Wittel F, Kröplin B (2006) Multiscale modeling of polyelectrolyte gels. In: Bar-Cohen Y (ed) Proceedings of the SPIE Electroactive Polymer Actuators and Devices, vol. 6168. p 61681H

    Google Scholar 

  • Wallmersperger T, Ballhause D, Kröplin B (2007) On the modeling of polyelectrolyte gels. Macromol Symp 254:306–313

    Google Scholar 

  • Wallmersperger T, Ballhause D, Kröplin B (2007) On the modeling of polyelectrolyte gels. Macromol Symp 254:306–313

    Google Scholar 

  • Wallmersperger T, Ballhause D (2008) Coupled chemo-electro-mechanical FE-simulation of hydrogels–part II: electrical stimulation. Smart Mater Struct 17:045012

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this research have been financially sponsored by the Deutsche Forschungsgemeinschaft (DFG) in the frame of the Priority Programme 1259 “Intelligente Hydrogele”. The author wants to thank Dr. Dirk Ballhause for his contributions to this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wallmersperger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wallmersperger, T. (2009). Modelling and Simulation of the Chemo-Electro-Mechanical Behaviour. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics