Skip to main content

Swelling-Related Processes in Hydrogels

  • Chapter
  • First Online:
Hydrogel Sensors and Actuators

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

The swelling equilibrium of gels can be explained by the Flory-Rehner theory. The FR theory calculates the difference of the chemical potential of a solvent inside a gel to the surrounding pure solvent as a sum of the mixing and the elastic part. The first is based on the Flory–Huggins theory, the second on the rubber elasticity theory (Sect. 1). An important role for gels with volume phase transition plays the Flory–Huggins interaction parameter and its dependencies on temperature and concentration. In a system with specific interactions between the solvent and the network, additional contributions to the chemical potential have to be taken into consideration. The application of hydrogels is based on changes of the gel properties, mostly the dramatic change of their swollen volume, in response to specific environmental stimuli. The velocity of changes of the degree of swelling is of outstanding importance. The kinetics of swelling and shrinking is determined by different diffusion processes (Sect. 2). The cooperative motion of the net chains is characterized by a cooperative diffusion coefficient D coop . The time dependence of the degree of swelling for gels of different geometries is followed and D coop calculated. Processes happening at the volume phase transition were discussed. Section 3 introduces then the fundamental concepts of the spectroscopic characterization of hydrogels. The focus of Sect. 3.1 is a practical hands-on advice that everyday practitioners of infrared and Raman spectroscopy will find useful. The reader will be introduced to spectroscopic methods and to sample preparation techniques. More advanced techniques like imaging spectroscopy and chemometric data analysis are discussed. Section 3.2 discusses the NMR imaging technique as an important method to visualize swelling-related processes in hydrogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It was observed, that a gel swollen to equilibrium in the liquid solvent shrinks as soon as it is transferred to the vapour phase of the same solvent. This phenomenon is known as the “paradox of Schroeder” (Freundlich 1932). For a theory of swelling with solvents in various phases, see (Borchard & Steinbrecht 1991).

  2. 2.

    Also, the swelling can be measured as the equilibrium water fraction EWF, defined as the wet weight fraction of swollen gel:

    EWF = [(weight of swollen gel) – (weight of dry gel)]/[weight of swollen gel]; \( {\rm \varphi_2}\, = \,{{\left( {1 - EWF} \right)\,{\rho_1}} \mathord{\left/{\vphantom {{\left( {1 - EWF} \right)\,{\rho_1}} {\left[ {{\rho_1}\, + \,EWF\,\left( {{\rho_2}\, - \,{\rho_1}} \right)} \right]}}} \right.} {\left[ {{\rho_1}\, + \,EWF\,\left( {{\rho_2}\, - \,{\rho_1}} \right)} \right]}}\, \)

  3. 3.

    Other values for Δs and Δh were given in (Shibayama et al. 1994a):

    Δs = −2.8 10−23 J/K; Δh = –6.5 10−21 J

  4. 4.

    Changes in the Gibbs (G) and the Helmholtz (\( F\, = \,f(T,V,{n_1},\,{n_2}\,) \)) free energies are assumed to be equivalent since the product pΔV is small at low pressures.

  5. 5.

    The cycle rank ξ, or number of independent circuits, characterizes the network with greater generality, regardless of the nature of its imperfection. ξ is the minimum number of scissions required to reduce the network to a spanning tree.

  6. 6.

    Uniaxial means: λx = λ; λ y = λ z = λ −1/2 ; λ = x/x 0 with x 0 the un-deformed and x the deformed length, respectively.

  7. 7.

    The mole number of net chains is n c = N c/NL = m/M c, where m is the mass of the network. The density of the network is ρ2 = m/V o.

  8. 8.

    It is possible to use the volume of the polymer in the state of preparing the network as a reference. The deformation of the network by swelling is then measured as the ratio of the swollen volume to the volume at preparation, see Chapter 1. This quantity is called as swelling ratio.

  9. 9.

    The memory term describes the changes of the network chain conformation in a solution at a concentration of the reacting system to the conformation in a dry state (reference state).

  10. 10.

    The ratio of the characteristic relaxation time to the characteristic diffusion time is the so-called Deborah number (De). The smaller De is, the more fluidic the material appears.

  11. 11.

    A solution of 20 wt-% polymer in water was irradiated with a dose of 80 kGy.

  12. 12.

    A gel consists of polymer chains, cross-links and solvent. The polymer chains undergo Brownian motion while the cross-links remain at the same position. Light scattered from gels therefore has a dynamic and a static contribution. The scattering by chain segments resulting in an exponential decay of the scattering field is called homodyne scattering. Contrary, cross-links behave as local oscillators and do not produce any decay of the scattering field. This non-decaying component heterodynes with the decaying part and is called heterodyne scattering.

  13. 13.

    For an ergodic system the long-time average is equal to the ensemble average – the average with respect to the configuration of the systems (average over all possible positions and shapes).

  14. 14.

    Contrast means a difference in NMR signals which enables us to identify and to observe a defined species in an ensemble of other species.

Abbreviations

AMTIR-1:

Ge33As12Se55 glass

ANN:

Artificial neural network

ATR:

Attenuated total reflectance

BaF2 :

Barium fluoride glass

CA:

Cluster analysis

CaF2 :

Calcium fluoride glass

CCD:

Charge-coupled device

CH3OD:

Per-deuterated methanol

D2O:

Deuterium oxide (heavy water)

DC:

Direct current

DLS:

Dynamic light scattering

EWF:

Equilibrium water fraction

FA:

Factor analysis

FESEM:

Field emission scanning electron microscopy

FPA:

Focal plane array

FT-IR:

Fourier transform infrared spectroscopy

GAR:

Grazing angle reflectance

Ge:

Germanium

IR:

Infrared

KBr:

Potassium bromide

LDA:

Linear discriminant analysis

MBAAm:

N, N’-methylene bisacrylamide

NMR:

Nuclear magnetic resonance

PAAc:

Poly(acrylic acid)

PCA:

Principal components analysis

PEG:

Poly(ethylene glycol)

PLS:

Partial least squares

PNIPAAm:

Poly(N-isopropyl acrylamide)

PVA:

Poly(vinyl alcohol)

PVME:

Poly(vinyl methyl ether)

PVP:

Poly(vinyl pyrrolidone)

RET:

Rubber elasticity theory

NMR:

Nuclear magnetic resonance

Si:

Silicon

UV:

Ultraviolet

Vis:

Visible

ZnS:

Zinc sulfide

ZnSe:

Zinc selenide

A :

Area

A0 :

Structure factor (RET)

a1 :

Correction term

B:

Volume factor (RET)

B 0 :

Static magnetic field power

B1 :

Intercept

c :

Concentration

c* :

Overlap concentration

d :

Diameter of gel cylinder

D :

Diffusion coefficient

D coop :

Cooperative diffusion coefficient

d p :

Depth of penetration

E :

Young's modulus

f :

Functionality of junction points

f :

Friction coefficient

f:

Force

F :

Free energy (intensive, with index)

G :

Gradient of magnetic field

G :

Free enthalpy (intensive, with index)

G :

Shear modulus

g (1)(t):

Electric field correlation function

g (2)(t):

Intensity correlation function

H :

Enthalpy

I F :

Scattering intensity for thermal fluctuations

k :

Cylinder diameter; disc thickness

K :

Bulk modulus

K(λ):

Hindrance of fluctuation (constraint function)

kB :

Boltzmann constant (1.381×10−23 J K−1)

m :

Mass

M :

Molecular weight

M c :

Molecular weight of network chain

n :

Number of moles

n :

Refractive index

n S :

Refractive index of the sample

nC :

Refractive index of the ATR crystal

N :

Number of molecules or particles

N 0 :

Number of monomers

NL :

Avogadro number (6.022×1023 mol−1)

p :

Pressure

q :

Scattering vector

q 2/3 :

Memory-term

Q :

Degree of swelling

Q m :

Mass degree of swelling

Q v :

Volume degree of swelling

R:

Gas constant (8.314 J K−1 mol−1)

r :

Radius

r:

Rocking vibration

R h :

Hydrodynamic radius

S :

Entropy (intensive)

s:

Scissoring vibration

T :

Tempereture

t :

Delay time

t:

Twisting vibration

T 1 :

Relaxation time

T 2 :

Relaxation time

T c :

Critical temperature

T g :

Glass transition temperature

t lag :

Time-lag

u:

Displacement

\( \overline {V_i} \) :

Partial molar volume of component i

V i :

Molar volume of component i

x,y,z:

Space coordinate

X P :

Fraction of dynamically scattered light

\( \langle \rangle \) :

Time average

\( {\left\langle I \right\rangle_{t,P}} \) :

Total time-averaged scattering intensity at a constant sample position

α:

angle of incidence

γ :

Gyro-magnetic ratio

Γ:

First cummulant

δ :

Deformation vibration

δ(u):

Displacement

Δ:

Total change

Δx:

Spatial resolution

Δω :

Width of resonance line

ηs :

Viscosity of solvent

Θ :

Theta condition

θ :

Scattering angle

λ:

Extension ratio relative to isotropic state of reference

λ0 :

Wavelength of the incident light

μ:

Poisson´s ratio

μ i :

Chemical potential of component i

μJ :

Number of junction points

ν :

Stretching vibration

ν :

Wavenumber

ν as :

Antisymmetrical stretching vibration

ν s :

Symmetrical stretching vibration

νc :

Cross-linking density (mol network chains / volume)

ξ:

Cycle rank

ξ:

Screening length

π:

Osmotic pressure, swelling pressure

σ:

Stress, force per area of un-deformed sample

τ :

Relaxation time

ϕA :

Volume fraction swelling agent

ϕ:

Volume fraction

χ:

Huggins interaction parameter

ω :

Resonance frequency of the signal

ω:

Wagging vibration

0:

Reference state

1:

Solvent

2:

Polymer

c :

Cross-linked

cr :

Critical

d :

Dry, unswollen

dry :

Dry state

el :

Elastic

exp :

Measured quantity

lo :

Longitudinal

m :

Medium intensity of the vibration mode

m :

Mixing

net :

Network

P :

Sample position

Q :

Swollen state

s :

Swollen

tr :

Transversal

u :

Uncross-linked

v :

Strong intensity of the vibration mode

VPT:

Volume phase transition temperature

vs :

Very strong intensity of the vibration mode

w :

Weak intensity of the vibration mode

References

  • Alfrey T Jr, Gurnee EF, Lloyd WG (1966) Diffusion in glassy polymers. J Polym Sci C (Polymer Symp) 12:249–261

    Article  Google Scholar 

  • Arndt K-F, Richter A, Ludwig S, Zimmermann J, Kressler J, Kuckling D, Adler H-J (1999) Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point. Acta Polym 50:383–390

    Article  Google Scholar 

  • Arndt K-F, Schmidt T, Menge H (2001) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322

    Article  Google Scholar 

  • Arndt K-F, Knoergen M, Richter S, Schmidt T (2006) NMR Imaging: monitoring of swelling of environmental sensitive hydrogels. In: Webb GA (ed) Modern Magnetic Resonance, Part 1. Springer, Dordrecht

    Google Scholar 

  • Arndt K-F, Knörgen M, Richter S, Schmidt T (2006b) NMR imaging: monitoring of swelling of environmental sensitive hydrogel. In: Webb GA (ed) Modern Magnetic Resonance. Springer, Dordrecht

    Google Scholar 

  • Bajpai SK, Bajpai M, Sharma L (2007) Inverse suspension polymerization of poly(methacrylic acid-co-partially neutralized acrylic acid) superabsorbent hydrogels: synthesis and water uptake behavior. Desig Monom Polym 10:181–192

    Article  Google Scholar 

  • Baumgartner S, Lahajnar G, Sepe A, Kristl J (2005) Quantitative evaluation of polymer concentration profile during swelling of hydrophilic matrix tablets using 1H NMR and MRI methods. Europ J of Pharmaceutics and Biopharmaceutics 59:299–306

    Article  Google Scholar 

  • Bhargava R, Levin IW (2005) Spectrochemical analysis using Infrared multichannel detectors. Blackwell, Oxford

    Book  Google Scholar 

  • Blümlich B (2000) NMR Imaging of Materials. Oxford University press, Oxford

    Google Scholar 

  • Blümich B, Casanova F (2006) Mobile NMR. In: Webb GA (ed) Modern Magnetic Resonance. Part 1. Springer, Dordrecht

    Google Scholar 

  • Borchard W, Steinbrecht U (1991) Colloid Polym Sci 269:95

    Article  Google Scholar 

  • Callaghan PT (1991) Principles of Nuclear Magnetic Resonance microscopy. Oxford University Press, Oxford

    Google Scholar 

  • Chiarelli P, Domenica C, Genuini G (1993) Crazing dynamics in the swelling of thermally crosslinked poly(vinyl alcohol)–poly(acrylic acid) films. J Material Sci: Materials in Medicine 4:5–11

    Article  Google Scholar 

  • da Costa A, Amado AM (2001) Cation hydration in hydrogel polyacrylamide-phosphoric acid network: a study by Raman spectroscopy. Solid State Ionics 145:79–84

    Article  Google Scholar 

  • Dong LC, Hoffman AS (1990) Synthesis and application of thermally-reversible heterogels for drug delivery. J Controlled Release 13:21–31

    Article  Google Scholar 

  • Dušek K, Patterson D (1968) Transition on swollen polymer networks induced by intramolecular condensation. J Polym Sci A-2(6):1209–1216

    Google Scholar 

  • Eckert F (2003) Bestimmung der kooperativen Diffusionskoeffizienten von Poly (acrylsäure)-Netzwerken. Diploma thesis, TU Dresden.

    Google Scholar 

  • Erman B, Flory PJ (1978) Theory of elasticity of polymer networks.II. The effect of geometric constraints on junctions. J Chem Phys 68:5363–5369

    Article  Google Scholar 

  • Ferraro JR, Nakamoto K (1994) Introductory Raman spectroscopy. Academic Press, San Diego

    Google Scholar 

  • Flory PJ (1942) Thermodynamics of high-polymer solutions. J Chem Phys 10:51–61

    Article  Google Scholar 

  • Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35:51–75

    Article  Google Scholar 

  • Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, Ithaca NY

    Google Scholar 

  • Flory PJ (1976) Statistical thermodynamics of random networks. Proc Royal Soc London A 351(1666):351–380

    Article  Google Scholar 

  • Flory PJ (1977a) Theory of elasticity of polymer networks. The effect of local constraints on junctions. J Chem Phys 66:5720–5729

    Google Scholar 

  • Flory PJ (1977b) The molecular theory of rubber elasticity. Contemp Top Polym Sci 2:1–18

    Article  Google Scholar 

  • Flory PJ, Rehner J Jr (1943a) Statistical mechanics of cross-linked polymer networks. I. Rubberlike elasticity. J Chem Phys 11:512–520

    Google Scholar 

  • Flory PJ, Rehner J Jr (1943b) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11:521–526

    Article  Google Scholar 

  • Freundlich H (1932) Kapillarchemie, Vol 2. Akad Verlagsges mbH, Leipzig, p 567

    Google Scholar 

  • Ganapathy S, Rajamohanan PR, Badiger MV, Mandhare AB, Mashelkar RA (2000) Proton magnetic resonance imaging in hydrogels: volume phase transition in poly(N-isopropylacryl-amid. Polymer 41:4543–4547

    Article  Google Scholar 

  • Garton A (1992) Infrared Spectroscopy of polymer blends, composites and surfaces. Hanser, Munich

    Google Scholar 

  • Gehrke SH (1993) Synthesis, equilibrium swelling, kinetics, permeability and applications of environmentally responsive gels. Adv Polym Sci 110:81–144

    Article  Google Scholar 

  • George KA, Wentrop-Byrne E, Hill DJT, Whittaker AK (2004) Investigation into the diffusion of water into HEMA-co-MOEP hydrogels. Biomacromolecules 5:1194–1199

    Article  Google Scholar 

  • Ghi PY, Hill DJ, Maillet D, Whittaker AK (1997a) N.m.r. imaging of the diffusion of water into poly(tetrahydrofufuryl methacrylate-co-hydroxyethylmethacrylate). Polymer 38:3985–3989

    Article  Google Scholar 

  • Ghi PJ, Hill DJT, Maillet D, Whittaker AK (1997b) N.m.r. imaging of the diffusion of water into poly(tetrahydrofurfuryl methacrylate-co-hydroxyethyl methacrylate). Polymer 38:3985–3989

    Article  Google Scholar 

  • Gotoh T, Nakatani Y, Sakohara S (1998) Novel synthesis of thermosensitive porous hydrogels. J Pol Sci 69:895–906

    Google Scholar 

  • Griffiths PR, de Haseth JA (2007) Fourier Transform Infrared Spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  • Günzler H, Gremlich HU (2002) IR Spectroscopy. Wiley-VCH, Weinheim

    Google Scholar 

  • Guo Y, Peng Y, Wu P (2008) A two-dimensional correlation ATR-FTIR study of poly(vinyl methyl ether) water solution. J Molec Structure 87:486–492

    Article  Google Scholar 

  • Hermans JJ (1947) Deformation and swelling of polymer networks containing comparatively long chains. Trans Faraday Soc 43:591–600

    Article  Google Scholar 

  • Hirotsu S (1991) Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957

    Article  Google Scholar 

  • Hirotsu S, Hirokawa Y, Tanaka T (1987) Volume-phase transitions of ionized N-isopropylacrylamide gels. J Chem Phys 87:1392–1395

    Article  Google Scholar 

  • Hotta Y, Ando I (2002) A study of shrinkage process of a polymer gel under electric field by 1H NMR imaging method using an NMR cell with thin platinum electrodes. J Molec Structure 602–603:165–170

    Article  Google Scholar 

  • Huggins ML (1941) Solutions of long-chain compounds. J Chem Phys 9:440

    Article  Google Scholar 

  • Huggins ML (1943) Thermodynamic properties of solutions of high polymers. The empirical constant in the activity equation. Ann N Y Acad Sci. 44:431–443

    Article  Google Scholar 

  • James HM, Guth E (1943) Theory of the elastic properties of rubber. J Chem Soc 11:455–481

    Google Scholar 

  • Knörgen M, Heuert U, Schneider H, Heinrich G (1999) NMR relaxation and NMR imaging of elastomers in the course of thermal aging. J Macromol Sci Phys B38:1009–1022

    Article  Google Scholar 

  • Knörgen M, Arndt K-F, Richter S, Kuckling D, Schneider H (2000) Investigation of swelling and diffusion in polymers by 1H NMR imaging: LCP networks and hydrogels. J Molec Struc 554:69–79

    Article  Google Scholar 

  • Kuckling D, Adler H-J P, Arndt K-F (2003) Poly(N-isopropylacrylamide) copolymers: hydrogel formation via photocrosslinkling. In: Bohidar HB, Dubin P, Osada Y (eds) Polymer Gels: fundamentals and applications, ACS Symp Ser 833. ACS, Washington

    Google Scholar 

  • Kwak S, Lafleur M (2003) Raman spectroscopy as a tool for measuring mutual-diffusion coefficients in hydrogels. Appl Spectroscopy 57:768–773

    Article  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Nature 242:190–191

    Google Scholar 

  • Li Y, Tanaka T (1990) Kinetics of swelling and shrinking of gels. J Chem Phys 92:1365–1371

    Article  Google Scholar 

  • Maeda Y (2001) IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir 17:1737–1742

    Article  Google Scholar 

  • Maeda Y, Mochiduki H, Yamamoto H, Nishimura Y, Ikeda I (2003) Effects of ions on two-step phase separation of poly(vinyl methyl ether) in water as studied by IR and Raman spectroscopy. Langmuir 19:10357–10360

    Article  Google Scholar 

  • Mark JE (1982) The use of model polymer networks to elucidate molecular aspects of rubberlike elasticity. Adv Polymer Sci 44:1–26

    Article  Google Scholar 

  • Onuki A (1993) Theory of phase transition in polymer gels. Adv Polymer Sci 109:63–121

    Article  Google Scholar 

  • Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interface Sci 85:1–33

    Article  Google Scholar 

  • Prior-Cabanillas A, Barrales-Rienda J, Frutos G, Quijada-Garrido I (2007) Swelling behaviour of hydrogels from methacrylic acid and poly(ethylene glycol) side chains by magnetic resonance imaging. Polym Int 56:506–511

    Article  Google Scholar 

  • Raasmark PJ, Andersson M, Lindgren J, Elvingson C (2005) Differences in binding of a cationic surfactant to cross-linked sodium poly(acrylate) and sodium poly(styrene sulfonate) studied by Raman spectroscopy. Langmuir 21:2761–2765

    Article  Google Scholar 

  • Richter S (2006) Contributions to the dynamical behavior of cross-linked and cross-linking systems: stimulus-sensitive microgels and hydrogels, reversible and irreversible gelation processes. Habilitation thesis, TU Dresden

    Google Scholar 

  • Sahoo P, Rana P, Swain S (2006) Interpenetrating polymer network PVA/PAA hydrogels. Intern J of Polym Mater 55:65–78

    Article  Google Scholar 

  • Saiano F, Pitarresi G, Mandracchia D, Giammona G (2005) Bioadhesive properties of a polyaminoacidic hydrogel: Evaluation by ATR FT-IR spectroscopy. Macromol Bioscience 5: 653–661

    Article  Google Scholar 

  • Saito S, Konno M, Inomata H (1993) Volume phase transition of N-alkylacrylamide gels. Advanced Polymer Sci. 109:207–232

    Article  Google Scholar 

  • Schmidt T, Querner C, Arndt K-F (2003) Characterization methods for radiation cross-linked poly(vinyl methyl ether) hydrogels. Nucl Instr and Meth in Phys Res B 208:331–335

    Article  Google Scholar 

  • Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  Google Scholar 

  • Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819

    Article  Google Scholar 

  • Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659

    Article  Google Scholar 

  • Shibayama M, Morimoto M, Nomura S (1994) Phase separation induced mechanical transition of poly(N-isopropylacrylamide)/water isochore gels. Macromolecules 27:5060–5066

    Article  Google Scholar 

  • Shibayama M, Morimoto M, Nomura S (1994b) Phase separation induced mechanical transition of poly(N-isopropylacrylamide)/water isochore gel. Macromolecules 27:5060–5066

    Article  Google Scholar 

  • Smith AL (1979) Applied Infrared spectroscopy. Wiley, New York

    Google Scholar 

  • Smith BC (1996) Fundamentals of Fourier Transform Infrared spectroscopy. CRC, New York

    Google Scholar 

  • Smith BC (1999) Infrared Spectral Interpretation. CRC, London

    Google Scholar 

  • Socrates G (2006) Infrared and Raman characteristic group frequencies. Wiley, West Sussex

    Google Scholar 

  • Sorber J, Steiner G, Schulz V, Guenther M, Gerlach G, Salzer R, Arndt K-F (2008) Hydrogel-based piezoresistive pH sensors: investigations using FT- IR attenuated total reflection spectroscopic imaging. Anal Chem 80:2957–2962

    Article  Google Scholar 

  • Sotta P, Fülber C, Demco DE, Blümlich B, Spiess HW (1996) Effect of residual dipolar interactions on the NMR relaxation in cross-linked elastomers. Macromolecules 29:6222–6230

    Article  Google Scholar 

  • Suzuki M, Hirasa O (1993) An approach to artificial muscle using polymer gels formed by micro-phase separation. Adv Polym Sci 110:241–261

    Article  Google Scholar 

  • Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218

    Article  Google Scholar 

  • Tanaka T, Hocker LO, Benedek GB (1973) Spectrum of light scattered from a viscoelastic gel. J Chem Phys 59:5151–5159

    Article  Google Scholar 

  • Wall FT (1942) Statistical thermodynamics of rubber. J Chem Phys 10:132–134

    Article  Google Scholar 

  • Wall FT (1943) Statistical thermodynamics of rubber. III. J Chem Phys 11:527–530

    Article  Google Scholar 

  • Wall FT (1951) Statistical thermodynamics of rubber elasticity. J Chem Phys 19:1435–1439

    Article  Google Scholar 

  • Yan Q, Hoffman AS (1995) Synthesis of macroporous hydrogels with rapid swelling and deswelling properties for delivery of macromolecules. Polymer 36:887–889

    Article  Google Scholar 

  • Yoshida R, Uccida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Article  Google Scholar 

  • Zerbi G (1999) Modern Polymer Spectroscopy. Wiley-VCH, Weinheim

    Book  Google Scholar 

Download references

Acknowledgments

The author thanks M. Knörgen (Martin-Luther-Universität Halle) for the fruitful cooperation on application of NMR imaging on smart hydrogels, and R. Reichelt (Westfälische Universität Münster) for the FESEM micrograph.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-F. Arndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arndt, KF., Krahl, F., Richter, S., Steiner, G. (2009). Swelling-Related Processes in Hydrogels. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics