Skip to main content

Synthesis of Hydrogels

  • Chapter
  • First Online:
Hydrogel Sensors and Actuators

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

In order to tailor hydrogels for the application as actuator-sensor microsystems based on the responsive behaviour of smart gels, a general strategy has to be developed. Since the phase transition phenomenon of hydrogels is theoretically well understood advanced materials based on the predictions can be prepared. The requirements for applying hydrogels can be summarized as follows:

  • Development of novel sensitive polymers: Polymer networks with a large volume transition in combination with a sufficient high elastic modulus and short response times have to be prepared.

  • Definition of the stimulus: Responsive behaviour of the gels towards relevant stimuli (e.g. temperature, pH value, solvent composition, low molecular weight solutes etc.) has to be realized. The hydrogels have to show a strong, non-linear response towards these stimuli. The defined adjustment of the stimuli must be possible.

  • Speed of response: The response time of the smart hydrogels have to be decreased by some orders of magnitude compared with conventional gels. Fast responsive hydrogels are necessary to obtain sufficient fast cycle times.

  • Specific stimulation: The subsequent adjustment of the transition by modification (e.g. changing the pH value) of the applied polymers must be possible. The external stimulation (e.g. by photo-switching) is desirable. Advanced materials will show multi-sensitive behaviour.

Since the volume phase transition of hydrogels is a diffusion-limited process the size of the synthesized hydrogels is an important factor. Consistent downscaling of the gel size will result in fast smart gels with sufficient response times. In order to apply smart gels in micro-systems, new preparation techniques for hydrogels have to be developed. For the up-coming nano-technology, nano-sized gels as actuating material would be of great interest.

An often applied method for the synthesis of hydrogels, especially for applications in medicine and pharmaceutics, is based on radiochemistry. The hydrogel can be formed by irradiation of monomers, polymers dissolved in water, or polymers in dry state. Electrons of different energies or γ-rays are used as high-energy radiation. The possibilities of the radiation-chemical synthesis of smart hydrogels are discussed on different examples. The technique is applied to bulk polymers, to micro- and nanogel particles, and to patterned layers on different materials. The basics and fundamentals of irradiation techniques as well as the equipment are described.

In addition to synthesis of hydrogels, the theory of thermoreversible gelation and the gel point itself, the determination of the gel point on gelatin by using dynamic light scattering (DLS), oscillatory shear rheology as well as nuclear magnetic resonance (NMR) diffusion experiments will be described. Special attention has been devoted to the comparison of the results each methods have been provided when monitoring the gelatin gelation process. Furthermore, an important point is the estimation of the critical dynamical exponents in DLS and rheology at the gel point and their comparison with the theoretical prediction, which was given by Doi and Onuki.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term dose means here the quantity of radiation applied to or absorbed accidentally by a given volume or mass of sample. The absorbed dose is measured in Gray (Gy), 1 Gy = 1J/kg.

  2. 2.

    The virtual dose is required for changing the MWD of the polymer in such a way that M w = 2 M n . If the polymer under investigation has a broader distribution, then D V > 0, or if it has a narrower distribution, then D V < 0.

  3. 3.

    Co60 is formed in atomic reactors under the bombardment with neutrons: \({\rm Co}_{27}^{\quad 59} + {\rm n}_0^1 \to {\rm Co}_{27}^{\quad 60} + \gamma \)

  4. 4.

    The term nanogel is used for intramolecularly cross-linked polymers. For intermolecularly cross-linked gels in the range of several 100 nm, the term microgel is used.

  5. 5.

    The overlap concentration c* is that concentration where contacts between the polymer chains occur. c* depends on molecular weight; the higher M is, the smaller is c*. At c > c*, the polymer chains form an entanglement (physical) network with elastic properties. It can be destroyed by adding solvent.

  6. 6.

    PAA: pKa = 4.7, Yu et al. (1992).

Abbreviations

2VP:

2-vinyl pyridine

AAmPA:

3-acrylamido propionic acid

ATR-FTIR:

Attenuated total reflection Fourier transform infra red

DI:

De-ionized

DLS:

Dynamic light scattering

DMAAAm:

2-(dimethylamino)-N-ethyl acrylamide

DMAAm:

N, N-dimethylacrylamide

DMIAAm:

2-(dimethyl maleimido)-N-ethyl-acrylamide

DSC:

Differential scanning calorimetry

EBL:

Electron beam lithography

FESEM:

Field emission scanning electron microscopy

HCl:

Hydrochloric acid

HPC:

Hydroxypropylcellulose

LBG:

Locust bean gum

LCST:

Lower critical solution temperature

MBAAm:

N, N-methylene bisacrylamide

MWD:

Molecular weight distribution

NIPAAm:

N-isopropyl acrylamide

NMR:

Nuclear magnetic resonance

OWS:

Optical waveguide spectroscopy

P2VP:

Poly(2-vinyl pyridine)

P4VP:

Poly(4-vinyl pyridine)

PAAc:

Poly(acrylic acid)

PEO:

Poly(ethylene oxide)

PFG-NMR:

Pulsed field gradient nuclear magnetic resonance

PNIPAAm:

Poly(N-isopropyl acrylamide)

PPO:

Poly(propylene oxide)

PVA:

Poly(vinyl alcohol)

PVCL:

Poly(vinyl caprolactam)

PVDF:

Poly(vinyliden fluorid)

PVME:

Poly(vinyl methyl ether)

PVP:

Poly(vinyl pyrrolidone)

SEM:

Scanning electron microscopy

SPR:

Surface plasmon resonance

TCF:

Time correlation function

UV:

Ultraviolett

XG:

Xanthan gum

A :

Area

c P :

Concentration of polymer solution

d :

Diameter in equilibrium state

d 0 :

Diameter at preparation

d f :

Fractal dimension of the critical gel

D :

Diffusion coefficient

D :

Irradiation dose

D av :

Average dose

D g :

Gelation dose

D p :

Fractal exponent

D V :

Virtual dose

g :

Gel fraction

g 1(q,t):

Electric field correlation function

g 2(q,t):

Time-intensity correlation function

G(t):

Shear stress relaxation modulus

G′(ω):

Shear storage modulus

G″(ω):

Shear loss modulus

I(t):

Scattering intensity at time t

l :

Layer thickness

l 0 :

Layer thickness in dry state

M n :

Number-averaged molecular weight

M w :

Weight-averaged molecular weight

n :

Critical exponent in shear rheology

n :

Refractive index

p 0 :

Average number of main chain scissions per monomer unit and per unit dose

q :

Scattering vector

q 0 :

Proportion of monomer units cross-linked per unit dose

Q :

Degree of swelling

Q m :

Weight degree of swelling

s:

Sol fraction

S :

Gel stiffness

S(q, t):

Dynamic structure factor

t :

Time

T :

Temperature

T c :

Critical temperature

T syn :

Synthesis temperature

u 2,0 :

Weight-averaged degree of polymerisation of the polymer before irradiation

U B :

Acceleration voltage

V:

Volume in equilibrium state

V 0 :

Volume at preparation

W d :

Weight of dry network

W t :

Weight of swollen network at time t

β, μ :

Critical exponents in DLS

ΔT c :

Width of temperature induced transition

θ :

Scattering angle

ω :

Shear frequency

ω:

Rotational speed

<τ>:

Mean relaxation time

References

  • Adam M, Lairez D (1996) Sol-gel transition. In: Cohen Addad JP (ed) The physical properties of polymeric gels. Wiley, Chichester

    Google Scholar 

  • Arndt K-F, Schmidt T, Reichelt R (2001a) Thermo-sensitive poly(methyl vinyl ether) micro-gel formed by high energy radiation. Polymer 42:6785–6791

    Article  Google Scholar 

  • Arndt K-F, Schmidt T, Menge H (2001b) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322

    Article  Google Scholar 

  • Arndt K-F, Richter A, Mönch I (2009) Synthesis of stimuli-sensitive hydrogels in the μM and sub-μM range by radiation techniques and their application. In: Barbucci R (ed) Hydrogels, biological properties and application. Springer, Berlin

    Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Liu RH, Devadoss C, Jo BH (2000a) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  • Beebe DJ, Moore JS, Bauer JM, Yu Q, Lui RH, Devadoss C, Jo BH (2000) Functional hydrogels for autonomous flow control inside microfluidic channels. Nature 404:588–590

    Article  Google Scholar 

  • Brand T, Richter S, Berger S (2006) Diffusion NMR as a new method for the determination of the gel point of gelatin. J Phys Chem B 110:15853–15857

    Article  Google Scholar 

  • Brand T, Nolis P, Richter S, Berger S (2008) NMR study of the gelation of a designed gelator. Magn Reson Chem 46:545–549

    Article  Google Scholar 

  • Brazel CB, Peppas NA (1995) Synthesis and characterization of thermomechanically and chemomechanically responsive poly(N-isopropylacrylamide-co-methacrylic acid) hydrogels. Macromolecules 28:8016–8020

    Article  Google Scholar 

  • Burchard W, Aberle T, Fuchs T, Richtering W, Coviello T, Geissler E, Schulz L (1998) Steps to a deeper understanding of gels and physical networks. In: te Nijenhuis K, Mijs WJ (eds) The Wiley Polymer Networks Group Review Series, vol 1. Wiley, New York

    Google Scholar 

  • Burkert S, Schmidt T, Gohs U, Dorschner H, Arndt K-F (2007a) Cross-linking of poly (N-vinylpyrrolidone) films by electron beam radiation. Radiat Phys and Chem 76:1324–1328

    Article  Google Scholar 

  • Burkert S, Schmidt T, Gohs U, Mönch JI, Arndt K-F (2007b) Patterning of thin poly(N-vinyl pyrrolidone) films on silicon substrates by electron beam lithography. J Appl Polymer Sci 106:534–539

    Article  Google Scholar 

  • Candau S, Bastide J, Delsanti M (1982) Structural, elastic, and dynamic properties of swollen polymer networks. Adv Polym Sci 44:27–71

    Article  Google Scholar 

  • Champ S, Xue W, Huglin MB (2000) Concentrating aqueous solutions of water soluble polymers by thermoreversible swelling of poly[(N-isopropylacrylamide)-co-(acrylic acid)] hydrogels. Macromol Chem Phys 201:931–940

    Article  Google Scholar 

  • Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience, New York

    Google Scholar 

  • Charlesby A (1960) Atomic radiation and polymers-radiation effects in materials. Pergamon Press, London

    Google Scholar 

  • Charlesby A, Alexander P (1955) Reticulation of polymers in aqueous solution by γ-rays. Journal de Chimie Physique et de Physico-Chimie Biologique 52:699–709

    Google Scholar 

  • Charlesby A, Pinner SH (1959) Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc Royal Soc A 249:367–386

    Article  Google Scholar 

  • Chen G, Hoffman AS (1995) Graft-copolymers that exhibit temperature-induced phase-transitions over a wide-range of pH. Nature 373:49–52

    Article  Google Scholar 

  • Chen G, Imanishi Y, Ito Y (1997) Micropattern immobilization of a pH-sensitive polymer. Macromolecules 30:7001–7003

    Article  Google Scholar 

  • Chen C, Imanishi Y, Ito Y (1998) Photolithographic synthesis of hydrogels. Macromolecules 31:4379–4381

    Article  Google Scholar 

  • Coviello T, Burchard W (1992) Criteria for the point of gelation in reversibly gelling systems according to dynamic light scattering and oscillatory rheology. Macromolecules 25:1011–1012

    Article  Google Scholar 

  • Dänhardt J, Panzer S, Bartel R (2002) Eine neue Elektronenstrahltechnologie für die Mikrosystemtechnik. FEP Annual Report 26–33

    Google Scholar 

  • De Carvalho W, Djabourov M (1998) Gelation under shear: a dynamic phase transition. In: te Nijenhuis K, Mijs WJ (eds) The wiley polymer networks group review Series, vol 1. Wiley, New York

    Google Scholar 

  • de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16:203–213

    Article  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press Ithaca, New York

    Google Scholar 

  • Doi M, Onuki A (1992) Dynamic coupling between stress and composition in polymer solutions and blends. J Phys II France 2:1631–1656

    Article  Google Scholar 

  • Eddington DT, Beebe DJ (2004a) Flow control with hydrogels. Adv Drug Delivery Rev 56:199–210

    Article  Google Scholar 

  • Eddington DT, Beebe DJ (2004b) A valved responsive hydrogel microdispensing device with integrated pressure source. J Microelectoromech Sys 13:586–593

    Article  Google Scholar 

  • Feil H, Bae Y, Feijen J, Kim S (1991) Molecuar separation by thermosensitive hydrogel membranes. J Membr Sci 64:283–294

    Article  Google Scholar 

  • Filipcsei G, Csetneki I, Szilagyi A, Zrinyi M (2007) Magnetic field-responsive smart polymer composites. Adv Polym Sci 206:137–189

    Article  Google Scholar 

  • Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. J Am Chem Soc 63:3083–3090

    Article  Google Scholar 

  • Fuchs T, Richtering W, Burchard W, Kajiwara K, Kitamura S (1997) Gel point in physical gels: rheology and light scattering from thermoreversibly gelling schizophyllan. Polym Gels Networks 5:541–559

    Article  Google Scholar 

  • Gao L, Zhao X (2004) Electrorheological behaviors of barium titanate/gelatin composite hydrogel elastomers. J Appl Polym Sci 94:2517–2521

    Article  Google Scholar 

  • García-Franco CA, Srinivas S, Lohse DJ, Brant P (2001) Similarities between gelation and long chain branching viscoelastic behaviour. Macromolecules 34:3115–3117

    Article  Google Scholar 

  • Geissler E (1993) Dynamic light scattering from polymer gels. In: Brown W (ed) Dynamic light scattering. Clarendon Press, Oxford

    Google Scholar 

  • Gordon M (1962) Good’s theory of cascade processes applied to the statistics of polymer distributions. Proc Roy Soc London A 268:240–256

    Article  Google Scholar 

  • Gotoh T, Nakatani Y, Sakohara S (1998) Novel synthesis of thermosensitive porous hydrogels. J Appl Polym Sci 69:895–906

    Article  Google Scholar 

  • Gottlieb R, Schmidt T, Arndt K-F (2005) Synthesis of temperature-sensitive hydrogel blends by high energy irradiation. Nucl Instr Methods Phys Res B 236:371–376

    Article  Google Scholar 

  • Guo L, Colby RH, Lusignan CP, Whitesides TH (2003a) Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules 36:9999–10008

    Article  Google Scholar 

  • Guo L, Colby RH, Lusignan CP, Howe AM (2003b) Physical gelation of gelatin studied with rheo-optics. Macromolecules 36:10009–10020

    Article  Google Scholar 

  • Harmon ME, Tang MF (2003) A microfluidic actuator based on thermosensitive hydrogels. Polymer 44:4547–4556

    Article  Google Scholar 

  • Harmon ME, Kuckling D, Frank C (2003a) Photo cross-linkable PNIPAAm copolymers 2: effects of constraint on temperature and pH-responsive hydrogel layers. Macromolecules 36:162–172

    Article  Google Scholar 

  • Harmon ME, Kuckling D, Pareek P, Frank CW (2003b) Photo cross-linkable PNIPAAm copolymers 4. Effects of copolymerization and cross-linking on the volume phase transition in constrained hydrogel layers. Langmuir 19:10947–10956

    Article  Google Scholar 

  • Hegewald J (2004). Strahlenchemische Synthese und Charakterisierung dünner, temperatursensitiver PVME-Schichten. Diploma thesis, TU, Dresden

    Google Scholar 

  • Hegewald J, Schmidt T, Gohs U, Günther M, Reichelt R, Stiller B, Arndt K-F (2005) Electron beam irradiation of poly(vinyl methyl ether) films: 1. Synthesis and film topography. Langmuir 21:6073–6080

    Google Scholar 

  • Hegewald J, Schmidt T, Eichhorn K, Kretschmer K, Kuckling D, Arndt K-F (2006) Electron beam irradiation of poly(vinyl methyl ether) films: 2 Temperature-dependent swelling behavior. Langmuir 22:5152–5159

    Article  Google Scholar 

  • Henke A, Kadłubowski S, Ulański P, Rosiak JM, Arndt K-F (2005) Radiation-induced cross-linking of polyvinylpyrrolidone-poly(acrylic acid) complexes. Nucl Inst Meth Phys Res B 236:391–398

    Article  Google Scholar 

  • Hirotsu S (1993) Coexistence of phases and the nature of 1st-order phase-transition in poly (N-isopropylacrylamide) gels. Adv Polym Sci 110:1–26

    Article  Google Scholar 

  • Hoffman AS (1981) A review of the use of radiation plus chemical and biochemical processing treatments to prepare novel biomaterials. Radiat Phys Chem 18:323

    Google Scholar 

  • Hong Y, Krsko P, Libera M (2004) Protein surface patterning using nanoscale PEG hydrogels. Langmuir 20:11123–11126

    Article  Google Scholar 

  • Ikeda S, Nishinari K (2001) Structural changes during heat-induced gelation of globular protein dispersions. Biopolymers 59:87–102

    Article  Google Scholar 

  • Ikkai F, Adachi E (2004) Novel method of producing polymer gels in aqueous solution using UV irradiation. Macromol Rapid Commun 25:1514–1517

    Article  Google Scholar 

  • Ikkai F, Shibayama M (1999) Static inhomogeneities in thermoreversible physical gels. Phys Rev Lett 82:4946–4949

    Article  Google Scholar 

  • Inomata H, Wada N, Yagi Y, Goto S, Saito S (1995) Swelling behaviors of N-alkylacrylamide gels in water–Effects of copolymerization and cross-linking density. Polymer 36:875–877

    Article  Google Scholar 

  • Ito Y, Chen G, Guan Y, Imanishi Y (1997) Patterned immobilization of thermoresponsive polymer. Langmuir 13:2756–2759

    Article  Google Scholar 

  • Kabra B, Gehrke S (1991) Synthesis of fast response, temperature-sensitive poly(N-isopropylacrylamide) gel. Polymer 32:322–323

    Google Scholar 

  • Kaiser C (2007) Strahlenchemische Synthese und Charakterisierung dünner Hydrogel-Multi-Schichten. Diploma thesis, TU, Dresden

    Google Scholar 

  • Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules 31:6099–6105

    Article  Google Scholar 

  • Kley ED (1971) Properties of water-soluble hydroxyalkyl celluloses and their derivates. J Polym Sci C 9:491–508

    Google Scholar 

  • Koh WG, Revzin A, Siminian A, Reeves T, Pishko M (2003) Control of mammalian cell and bacteria adhesion on substrates micropatterned with poly(ethylene glycol) hydrogels. Biomed Microdev 5:11–19

    Article  Google Scholar 

  • Krsko P, Sukhishvili MM, Clancy R, Libera M (2003) Electron-beam surface-patterned poly(ethylene glycol) microhydrogels. Langmuir 19:5618–5625

    Article  Google Scholar 

  • Kuckling D, Wohlrab S (2002) Synthesis and characterization of multiresponsive graft copolymer gels. Polymer 43:1533–1536

    Article  Google Scholar 

  • Kuckling D, Adler H-J P, Arndt K-F, Ling L, Habicher WD (2000) Temperature and pH-dependent solubility of novel poly(N-isopropyacrylamide)-copolymers. Macromol Chem Phys 201:273–280

    Article  Google Scholar 

  • Kuckling D, Harmon M, Frank CW (2002a) Photo cross-linkable PNIPAAm copolymers 1: synthesis and characterization of constrained temperature-responsive hydrogel layers. Macromolecules 35:6377–6383

    Article  Google Scholar 

  • Kuckling D, Adler H-J, Arndt K-F (2002b) Poly(N-isopropylacrylamide) copolymers: Hydrogel formation via photocrosslinking. In: Bohindar HB, Dubin P, Osada Y (eds) Polymer gels: fundamentals and applications, ACS Symp Ser 833. ACS, Washington

    Google Scholar 

  • Kuckling D, Richter A, Arndt K-F (2003a) Temperature and pH dependent swelling behavior of poly(N-isopropyl-acrylamide)-copolymer hydrogels and their use in flow control. Macromol Mater Eng 288:144–151

    Article  Google Scholar 

  • Kuckling D, Hoffman J, Plötner M, Ferse D, Kretschmer K, Adler HJP, Arndt KF, Reichelt R (2003b) Photo cross-linkable PNIPAAm copolymers 3: microfabricated temperature responsive hydrogels. Polymer 44:4455–4462

    Article  Google Scholar 

  • Lang P, Burchard W (1991) Dynamic light scattering at the gel point. Macromolecules 24: 814–815

    Article  Google Scholar 

  • Lele BS, Hoffman AS (2000) Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolyzable PEG-anhydride-drug linkages. J Controlled Release 69:237–248

    Article  Google Scholar 

  • Lesho MJ, Sheppard NF (1996) Adhesion of polymer films to oxidized silicon and its effect on performance of a conductometric pH sensor. Sens Actuators B 37:61–66

    Article  Google Scholar 

  • Licea-Claverie A, Salgado-Rodriguez R, Lugo-Medina E, Arndt K-F (2008) Incorporation of acid polymethacrylates into temperature sensitive hydrogels using electron beam irradiation. Polym Bull 60:701–712

    Article  Google Scholar 

  • Liu Y, Velada JL, Huglin MB (1999) Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with sodium acrylate and sodium methacrylate. Polymer 40:4299–4306

    Article  Google Scholar 

  • Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA (2003) Cell-responsive synthetic hydrogels. Adv Mater 15:888–892

    Article  Google Scholar 

  • Macosko CW, Miller DR (1976) A new derivation of average molecular weights of nonlinear polymers. Macromolecules 9:199–206

    Article  Google Scholar 

  • Marshall AJ, Blyth J, Davidson CAB, Lowe CR (2003) pH-sensitive holographic sensors. Anal Chem 75:4423–4431

    Article  Google Scholar 

  • Martin JE, Adolf D (1991) The sol-gel transition in chemical gels. Annu Rev Phys Chem 42: 311–339

    Article  Google Scholar 

  • Martin JE, Wilcoxon J, Odinek J (1991) Decay of density fluctuations in gels. Phys Rev A 43: 858–872

    Article  Google Scholar 

  • Matsukata M, Hirata M, Gong JP, Osada Y, Sakurai Y, Okano T (1998) Two step surfactant binding of solvated and cross-linked poly(N-isopropylacrylamide-co-(2-acrylamido-2-methyl propane sulfonic acid)). Colloid Polym Sci 276:11–18

    Article  Google Scholar 

  • Matsunaga T, Shibayama M (2007) Gel point determination of gelatin hydrogels by dyn-amic light scattering and rheological measurements. Phys Rev E 76:030401-1–030401-4

    Article  Google Scholar 

  • Milner ST (1991) Polymer brushes. Science 251:905–914

    Article  Google Scholar 

  • Muthukumar M (1989) Screening effect on viscoelasticity near the gel point. Macromolecules 22:4656–4658

    Article  Google Scholar 

  • Muthukumar M, Winter HH (1986) Fractal dimension of a cross-linking polymer at the gel point. Macromolecules 19:1284–1285

    Article  Google Scholar 

  • Nakayama Y, Matsuda T (1992) Preparation and characteristics of photocrosslinkable hydrophilic polymer having cinnamate moiety. J Polym Sci A, Polym Chem 30:2451–2457

    Article  Google Scholar 

  • Ngai T, Wu C, Chen Y (2004) Origins of the speckles and slow dynamics of polymer gels. J Phys Chem B 108:5532–5540

    Article  Google Scholar 

  • Norisuye T, Shibayama M, Tamaki R, Chujo Y (1999) Time-resolved dynamic light scattering studies on gelation process of organic-inorganic polymer hybrids. Macromolecules 32:1528–1533

    Article  Google Scholar 

  • Norisuye T, Inoue M, Shibayama M, Tamaki R, Chujo Y (2000) Time-resolved dynamic light scattering study on the dynamics of silica gels during gelation process. Macromolecules 33:900–905

    Article  Google Scholar 

  • Nyström B, Kjøniksen AL (1997) Dynamic light scattering of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in water. Langmuir 13:4520–4526

    Article  Google Scholar 

  • Okuzaki H, Osada Y (1995) Role and effect of cross-linkage on the polyelectrolyte-surfactant interactions. Macromolecules 28:4554–4557

    Article  Google Scholar 

  • Pareek P, Adler H-J P, Kuckling D (2006) Tuning the swelling behavior of chemisorbed thin PNIPAAm hydrogel layers by N, N-dimethyl acrylamide content. Prog Colloid Polym Sci 132:145–151

    Article  Google Scholar 

  • Park TG, Hoffman AS (1994) Deswelling characteristics of poly(N-isopropylacrylamide) hydrogel. J Appl Polym Sci 52:85–89

    Article  Google Scholar 

  • Perera MCS, Hill DJT (1999) Radiation chemical yields: G values. In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley-Interscience, New York

    Google Scholar 

  • Pich A, Lu Y, Adler H-J, Schmidt T, Arndt K-F (2002) Dispersion polymerization of pyrrole in the presence of poly(vinyl methyl ether) microgels. Polymer 43:5723–5729

    Article  Google Scholar 

  • Querner C, Schmidt T, Arndt K-F (2004) Characterization of structural changes of poly(vinyl methyl ether) γ-irradiated in diluted aqueous solutions. Langmuir 20:2883–2889

    Article  Google Scholar 

  • Ren SZ, Shi WF, Zhang WB, Sorensen CM (1992) Anomalous diffusion in aqueous solutions of gelatin. Phys Rev A 45:2416–2422

    Article  Google Scholar 

  • Richter S (2007) Recent gelation studies on irreversible and reversible systems with dynamic light scattering and rheology–A concise summary. Macromol Chem Phys 208:1495–1502

    Article  Google Scholar 

  • Richter A, Kuckling D, Arndt K-F, Gehring T, Howitz S (2003) Electronically controllable microvalves based on hydrogels: magnitudes and potential applications. J Microelectromech Syst 12:748–753

    Article  Google Scholar 

  • Richter A, Bund A, Keller M, Arndt K-F (2004a) Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sens Actuat B 99:579–585

    Article  Google Scholar 

  • Richter S, Boyko V, Matzker R, Schröter K (2004b) Gelation studies: comparison of the critical exponents obtained by dynamic light scattering and rheology, 2A thermoreversible gelling system: mixtures of xanthan gum and locust-bean gum. Macromol Rapid Commun 25: 1504–1509

    Article  Google Scholar 

  • Richter S, Boyko V, Schröter K (2004c) Gelation studies on a radical chain cross-linking copolymerization process: comparison of the critical exponents obtained by dynamic light scattering and rheology. Macromol Rapid Commun 25:542–546

    Article  Google Scholar 

  • Richter S, Matzker R, Schröter K (2005) Gelation Studies, 4: Why do ‘‘classical’’ methods like oscillatory shear rheology and dynamic light scattering for characterization of the gelation threshold sometimes not provide identical results especially on thermoreversible gels? Macromol Rapid Commun 26:1626–1632

    Article  Google Scholar 

  • Richtering W, Fuchs T, Burchard W (1998) Dynamics during thermoreversible gelation of the polysaccharide schizophyllan. Ber Bunsenges Phys Chem 102:1660–1664

    Article  Google Scholar 

  • Rosiak JM (1998) Gel/sol analysis of irradiated polymers. Radiat Phys Chem 51:13–17

    Article  Google Scholar 

  • Rühe J et al (2004) Polyelectrolyte brushes. Adv Polym Sci 165:79–150

    Article  Google Scholar 

  • Schild HG (1992) Poly(N-isopropylacrylamide)–experiment, theory and application. Progr Polym Sci 17:163–249

    Article  Google Scholar 

  • Schild HG, Muthukumar M, Tirrell DA (1991) Cononsolvency in mixed aqueous-solutions of poly(N-isopropyacrylamide). Macromolecules 24:948–952

    Article  Google Scholar 

  • Schmaljohann D, Nitschke M, Schulze R, Eing A, Werner C, Eichhorn K-J (2005) In situ study of thermoresponsive behavior of micropatterned hydrogel films by imaging ellipsometry. Langmuir 21:2317–2322

    Article  Google Scholar 

  • Schmidt T, Janik I, Kadłubowski S, Ulański P, Rosiak JM, Reichelt R, Arndt K-F (2005) Pulsed electron beam irradiation of dilute aqueous poly(vinyl methyl ether) solutions. Polymer 46:9908–9918

    Article  Google Scholar 

  • Schmidt T, Mönch JI, Arndt K-F (2006) Temperature-sensitive hydrogel pattern by electron-beam lithography. Macromol Mater Eng 291:755–761

    Article  Google Scholar 

  • Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819

    Article  Google Scholar 

  • Shibayama M, Norisuye T (2002) Gel formation analyses by dynamic light scattering. Bull Chem Soc Jpn 75:641–659

    Article  Google Scholar 

  • Shibayama M, Morimoto M, Nomura S (1994) Phase-separation induced mechanical transition of poly(N-isopropyacrylamide) water isochore gels. Macromolecules 27:5060–5066

    Article  Google Scholar 

  • Shibayama M, Fujikawa Y, Nomura S (1996a) Dynamic light scattering study of poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules 29:6535–6540

    Article  Google Scholar 

  • Shibayama M, Mizutani SY, Nomura S (1996b) Thermal properties of copolymer gels containing N-isopropylacrylamide. Macromolecules 29:2019–2024

    Article  Google Scholar 

  • Shibayama M, Norisuye T, Nomura S (1996c) Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels. Macromolecules 29:8746–8750

    Article  Google Scholar 

  • Singh D, Kuckling D, Choudhary V, Adler H-J, Koul V (2006) Synthesis and characterization of poly(N-isopropylacrylamide) films by photo polymerization. Polym Adv Technol 17:186–192

    Article  Google Scholar 

  • Stauffer D (1998) Gelierungstheorie. Versäumte Zusammenarbeit von Physik und Chemie. Ber Bunsenges Phys Chem 102:1672–1678

    Article  Google Scholar 

  • Stauffer D, Aharony A (1995) Perkolationstheorie–Eine Einführung. VCH, Weinheim

    MATH  Google Scholar 

  • Stauffer D, Coniglio A, Adam M (1982) Gelation and critical phenomena. Adv Polym Sci 44: 103–158

    Article  Google Scholar 

  • Stile RA, Burghardt WR, Healy KE (1999) Synthesis and characterization of injectable poly (N-isopropylacrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules 32:7370–7379

    Article  Google Scholar 

  • Stockmayer WH (1943) Theory of molecular size distribution and gel formation in branched-chain polymers. J Chem Phys 11:45–55

    Article  Google Scholar 

  • Takeda M, Norisuye T, Shibayama M (2000) Critical dynamics of cross-linked polymer chains near the gelation threshold. Macromolecules 33:2909–2915

    Article  Google Scholar 

  • Te Nijenhuis K (1997a) Thermoreversible networks. Introduction. Adv Polym Sci 130:1–12

    Article  Google Scholar 

  • Te Nijenhuis K (1997b) Thermoreversible networks. Gelatin. Adv Polym Sci 130:160–193

    Article  Google Scholar 

  • Theiss D, Schmidt T, Dorschner H, Reichelt R, Arndt K-F (2005) Filled temperature-sensitive poly(vinyl methyl ether) hydrogels. J Appl Polym Sci 98:2253–2265

    Article  Google Scholar 

  • Toomey R, Freidank D, Rühe J (2004) Swelling behavior of thin, surface-attached polymer networks. Macromolecules 37:882–887

    Article  Google Scholar 

  • Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermacromolecular complexes. Adv Polym Sci 45:1–130

    Article  Google Scholar 

  • Vakkalanka SK, Peppas NA (1996) Swelling behavior of temperature- and pH-sensitive block terpolymers for drug delivery. Polym Bull 36:221–225

    Article  Google Scholar 

  • Velada JL, Liu Y, Huglin MB (1998) Effect of pH on the swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers. Macromol Chem Phys 199:1127–1134

    Article  Google Scholar 

  • Ward JH, Bashir R, Peppas NA (2001) Micropatterning of biomedical polymer surfaces by novel UV polymerization techniques. J Biomed Mater Res 56:351–360

    Article  Google Scholar 

  • Winter HH, Mours M (1997) Rheology of polymers near liquid-solid transitions. Adv Polym Sci 134:165–234

    Article  Google Scholar 

  • Wohlrab S, Kuckling D (2001) Multisensitive polymers based on 2-vinylpyridine and N-isopropylacrylamide. J Polym Sci A, Polym Chem 39:3797–3804

    Article  Google Scholar 

  • Wounters D, Schubert US (2003) Nanolithography and nanochemistry: probe-related patterning techniques and chemical modification for nanmeter-sized devices. Angew Chem Int Ed 43: 2480–2495

    Article  Google Scholar 

  • Xia Y, Whiteside GM (1998) Soft lithography. Angew Chem Inter Ed 37:550–557

    Article  Google Scholar 

  • Yoshida R, Ichijo H, Hakuta T, Yamaguchi T (1995a) Self-oscillating swelling and deswelling of polymer gels. Macromol Rapid Commun 16:305–310

    Article  Google Scholar 

  • Yoshida R, Uchida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995b) Comb- type grafted hydrogels with rapid de-swelling response to temperature-changes. Nature 374:240–242

    Article  Google Scholar 

  • Yoshioka H, Mikami M, Mori Y, Tsuchida E (1993) Preparation of thermoresponsive surfaces using polyvinylchloride-graft-poly(N-isopropylacrylamide). Polym Adv Technol 4:519–521

    Article  Google Scholar 

  • Yu H, Grainger DW (1993) Thermosensitive swelling behavior in cross.linked N-isopropylacrylamide networks–cationic, anionic, and ampholytic hydrogels. J Appl Polym Sci 49:1553–1563

    Article  Google Scholar 

  • Yu X, Tanaka A, Tanaka K, Tanaka T (1992) Phase transition of a poly(acrylic acid) gel induced by polymer complexation. J Chem Phys 97:7805–7808

    Article  Google Scholar 

  • Zhang J, Peppas NA (2000) Synthesis and characterization of pH- and temperature-sensitive poly(methacrylic acid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks. Macromolecules 33:102–107

    Article  Google Scholar 

  • Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN-PNIPAAm hydrogels. Biomaterials 25:3793–3805

    Article  Google Scholar 

  • Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Progr Polym Sci Jpn 25:677–710

    Article  Google Scholar 

  • Zhou SQ, Wu C (1996) In-situ interferometry studies of the drying and swelling kinetics of an ultrathin poly(N-isopropylacrylamide) gel film below and above its volume phase transition temperature. Macromolecules 29:4998–5001

    Article  Google Scholar 

  • Zrinyi M (2008) Magnetic polymeric gels as intelligent artificial muscles. In: Shahinpoor M, Schneider HJ (eds) Intelligent Materials. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. I. Mönch (IFW Dresden) for the ELB-experiments and to Dr. U. Gohs (IPF Dresden) for the irradiation experiments with the electron accelerator.

The financial support by the DFG (grants no. RI 1079/1-1, RI 1079/1-2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk Kuckling or Karl-Friedrich Arndt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuckling, D., Arndt, KF., Richter, S. (2009). Synthesis of Hydrogels. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics