Skip to main content

General Properties of Hydrogels

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 6))

Abstract

In the application areas of polymer hydrogels, precise information on their molecular constitution as well as their elastic properties is required. Several interesting molecular features control the elastic properties of the hydrogels. In this chapter, we describe general properties of hydrogels formed by free-radical cross-linking copolymerization of vinyl/divinyl monomers in aqueous solutions. Special attention is paid to the relationships between the formation conditions of hydrogels and their properties such as swelling behaviour, elastic modulus, and spatial inhomogeneity. New developments achieved in the design of hydrogels with a good mechanical performance and a fast response rate is also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To minimize the energy function, one needs to take the derivatives of the energy contributions with respect to α, and set the sum of the derivatives to zero. Thus, since \( {{\partial \Delta {G_{el}}} \mathord{\left/{\vphantom {{\partial \Delta {G_{el}}} {\partial \alpha }}} \right.} {\partial \alpha }}\; \approx \;{N_s}^{ - 1}\,\alpha \) and \( {{\partial \Delta {G_{ion}}} \mathord{\left/{\vphantom {{\partial \Delta {G_{ion}}} {\partial \alpha }}} \right.} {\partial \alpha }}\; \approx \;f/\,\alpha \), one obtains \( \alpha \approx \left(fN_s \right)^{1/2}\), i.e., (3) in the text.

Abbreviations

AAm:

Acrylamide

AMPS:

Na sodium salt of 2-acrylamido-2-methylpropane sulfonic acid

DMSO:

Dimethylsulfoxide

FH:

Flory–Huggins

MBAAm:

N, N-methylene bisacrylamide

PAAc:

Poly(acrylic acid)

PAAm:

Poly(acrylamide)

PDMAAm:

Poly(N, N-dimethylacrylamide)

PEG-300:

Poly(ethylene glycol) of molecular weight 300 g mol−1

PNIPAAm:

Poly(N-isopropyl acrylamide)

TBA/AAm:

Poly(N-t-butylacrylamide-co-AAm)

Co :

Initial monomer concentration (g monomer / 100 mL solution)

\( f\; \) :

Effective charge density of the network

G r :

Reduced elastic modulus

G o :

Modulus of elasticity after gel preparation

N s :

Number of segments between two successive cross-links

Q v :

Volume swelling ratio (swollen gel volume / dry gel volume)

R ex,q :

Excess scattering intensity at the scattering vector q

V :

Gel volume at a given degree of swelling

V eq :

Equilibrium swollen normalized gel volume

V o :

Gel volume in after-preparation state

V r :

Normalized gel volume

V sol :

Equilibrium swollen gel volume in solution

V w :

Equilibrium swollen gel volume in water

xi :

Ionic monomer mole fraction in comonomer feed

α:

Linear deformation ratio

ΔG el :

Gibbs free energy of elastic deformation

ΔG ion :

Ionic contribution to Gibbs free energy

ε xl :

Cross-linking efficiency of cross-linker

\( \varphi_2\) :

Volume fraction of cross-linked polymer in gel

\( \varphi_2^0 \) :

Volume fraction of cross-linked polymer after gel preparation

νc :

Effective cross-link density

References

  • Almdal K, Dyre J, Hvidt S, Kramer O (1993) What is a gel? Makromol Chem Macromol Symp 76:49–51

    Article  Google Scholar 

  • Arndt Schmidt T, Richter A, Kuckling D (2004) High response smart gels. Synthesis and applications. Macromol Symp 207:257–268

    Article  Google Scholar 

  • Arndt K-F, Schmidt T, Menge H (2001) Poly(vinyl methyl ether) hydrogel formed by high energy irradiation. Macromol Symp 164:313–322

    Article  Google Scholar 

  • Bastide J, Candau SJ (1996) Structure of gels as investigated by means of static scattering techniques. In: Cohen Addad JP (ed) Physical properties of polymeric gels. Wiley, New York

    Google Scholar 

  • Bromberg L, Yu GA, Matsuo ES, Suzuki Y, Tanaka T (1997) Dependency of swelling on the length of subchain in poly(N, N-dimethylacrylamide)-based hydrogels. J Chem Phys 106: 2906–2910

    Article  Google Scholar 

  • Dinu MV, Ozmen MM, Dragan ES, Okay O (2007) Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels. Polymer 48:195–204

    Article  Google Scholar 

  • Durmaz S, Okay O (2000) Acrylamide/2-acrylamido- 2- methyl propane sulfonic acid sodium salt–based hydrogels: synthesis and characterization. Polymer 41:3693–3704

    Article  Google Scholar 

  • Dusek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci A 2(6):1209–1216

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Funke W, Okay O, Joos-Muller B (1998) Microgels – intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci 136:139–234

    Article  Google Scholar 

  • Gundogan N, Melekaslan D, Okay O (2002) Rubber elasticity of poly(N-isopropylacrylamide) gels at various charge densities. Macromolecules 35:5616–5622

    Article  Google Scholar 

  • Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial inhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823

    Article  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/deswelling properties. Adv Mat 14:1120–1124

    Article  Google Scholar 

  • Hirotsu S (1993) Coexistence of phases and the nature of first-order transition in poly(N-isopropylacrylamide) gels. Adv Polym Sci 110:1–26

    Article  Google Scholar 

  • Katayama S, Hirokawa Y, Tanaka T (1984) Reentrant phase transition in acrylamide-derivative copolymer gels. Macromolecules 17:2641–2643

    Article  Google Scholar 

  • Khokhlov A, Starodubtzev S, Vasilevskaya VV (1993) Conformational transitions in polymer gels: theory and experiment. Adv Polym Sci 109:123–172

    Article  Google Scholar 

  • Kizilay MY, Okay O (2003a) Effect of initial monomer concentration on spatial inhomogeneity in poly(acrylamide) gels. Macromolecules 36:6856–6862

    Article  Google Scholar 

  • Kizilay MY, Okay O (2003b) Effect of hydrolysis on spatial inhomogeneity in poly(acrylamide) gels of various crosslink densities. Polymer 44:5239–5250

    Article  Google Scholar 

  • Kizilay MY, Okay O (2004) Effect of swelling on spatial inhomogeneity in poly(acrylamide) gels formed at various monomer concentrations. Polymer 45:2567–2576

    Article  Google Scholar 

  • Lindemann B, Schroder UP, Oppermann W (1997) Influence of crosslinker reactivity on the formation of inhomogeneities in hydrogels. Macromolecules 30:4073–4077

    Article  Google Scholar 

  • Lozinsky VI (2002) Cryogels on the basis of natural and synthetic polymers: preparation, properties and application. Russ Chem Rev 71:489–511

    Article  Google Scholar 

  • Melekaslan D, Okay O (2000) Swelling of strong polyelectrolyte hydrogels in polymer solutions: effect of ion pair formation on the polymer collapse. Polymer 41:5737–5747

    Article  Google Scholar 

  • Melekaslan D, Okay O (2001) Reentrant phase transition of strong polyelectrolyte poly(N-isopropylacrylamide) gels in PEG solutions. Macromol Chem Phys 202:304–312

    Article  Google Scholar 

  • Naghash HJ, Okay O (1996) Formation and structure of polyacrylamide gels. J Appl Polym Sci 60:971–979

    Article  Google Scholar 

  • Oh KS, Oh JS, Choi HS, Bae YC (1998) Effect of crosslinking density on the swelling behavior of NIPA gel particles. Macromolecules 31:7328–7335

    Article  Google Scholar 

  • Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779

    Article  Google Scholar 

  • Okay O, Gundogan N (2002) Volume phase transition of polymer networks in polymeric solvents. Macromol Theory Simul 11:287–292

    Article  Google Scholar 

  • Okay O, Oppermann W (2007) Polyacrylamide – clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387

    Article  Google Scholar 

  • Orakdogen N, Okay O (2006a) Correlation between crosslinking efficiency and spatial inhomogeneity in poly(acrylamide) hydrogels. Polym Bull 57:631–641

    Article  Google Scholar 

  • Orakdogen N, Okay O (2006b) Reentrant conformation transition in poly(N, N-dimethyl acrylamide) hydrogels in water- organic solvent mixtures. Polymer 47:561–568

    Article  Google Scholar 

  • Orakdogen N, Kizilay MY, Okay O (2005) Suppression of inhomogeneities in hydrogels formed by free-radical crosslinking copolymerization. Polymer 46:11407–11415

    Article  Google Scholar 

  • Ozmen MM, Okay O (2003) Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. Eur Polym J 39:877–888

    Article  Google Scholar 

  • Ozmen MM, Dinu MV, Dragan ES, Okay O (2007) Preparation of macroporous acrylamide-based hydrogels: cryogelation under isothermal conditions. J Macromol Sci Part A 44:1195–1202

    Google Scholar 

  • Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30

    Article  Google Scholar 

  • Shibayama M, Tanaka T (1993) Phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62

    Article  Google Scholar 

  • Silberberg-Bouhnik M, Ramon O, Ladyzhinski I, Mizrahi S (1995) Osmotic deswelling of weakly charged poly(acrylic acid) solutions and gels. J Polym Sci Polym Phys 33:2269–2279

    Article  Google Scholar 

  • Tanaka T (1978) Collapse of gels and the critical end point. Phys Rev Lett 40:820–823

    Article  Google Scholar 

  • Tanaka T (1981) Gels. Sci Am 244:110–123

    Article  Google Scholar 

  • Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30:1–9

    Article  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity. Oxford University Press, Oxford

    Google Scholar 

  • Yazici I, Okay O (2005) Spatial inhomogeneity in poly(acrylic acid) hydrogels. Polymer 46: 2595–2602

    Article  Google Scholar 

  • Yoshida R, Ushida K, Kaneko Y, Sakai K, Kikuchi A, Sakurai Y, Okano T (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374:240–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Okay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okay, O. (2009). General Properties of Hydrogels. In: Gerlach, G., Arndt, KF. (eds) Hydrogel Sensors and Actuators. Springer Series on Chemical Sensors and Biosensors, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75645-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75645-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75644-6

  • Online ISBN: 978-3-540-75645-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics