Skip to main content

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The surrogates approach was suggested as a means to distinguish linear from nonlinear stochastic or deterministic processes. The numerical implementation is straightforward, but the statistical interpretation depends strongly on the stochastic process under consideration and the used test statistic. In the first part, we present quantitative investigations of level accuracy under the null hypothesis, power analysis for several violations, properties of phase randomization, and examine the assumption of uniformly distributed phases. In the second part we focus on level accuracy and power characteristics of Amplitude Adjusted Fourier-Transformed (AAFT) and improved AAFT (IAAFT) algorithms. In our study AAFT outperforms IAAFT. The latter method has a similar performance in many setups but it is not stable in general. We will see some examples where it breaks down.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.S. Bartlett. Chances or chaos. Journal of Royal Statistical Society, Series A, 153:321–347, 1990.

    Google Scholar 

  2. P.J. Brockwell and R.A. Davis. Time Series: Theory and Methods. Springer, New York, 1987.

    MATH  Google Scholar 

  3. K.S. Chan. On the validity of the method of surrogate data. Fields Institute Communications, 11:77–97, 1997.

    Google Scholar 

  4. R. Dahlhaus and D. Janas. A frequency domain bootstrap for ratio statistics in time series. Annals of Statistics, 24:1934–1963, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Dolan and M.L. Spano. Surrogates for nonlinear time series analysis. Physical Review E, 64, 2001.

    Google Scholar 

  6. S. Elgar, R.T. Guza, and R.J. Seymour. Groups of waves in shallow water. Journal of Geophysical Research, 89:3623–3634, 1984.

    Article  Google Scholar 

  7. M.J. Feigenbaum. Quantitative universality in a class of nonlinear transitions. Journal of Statistical Physics, 19:25–52, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Grassberger. Do climatic attractors exist? Nature, 323:609, 1986.

    Article  Google Scholar 

  9. A.J. Lawrance. Chaos: but not in both directions! Statistics and Computing, 11:213–216, 2001.

    Article  MathSciNet  Google Scholar 

  10. A.J. Lawrance and N.M. Spencer. Curved chaotic map time series models and their stochastic reversals. Scandinavian Journal of Statistics, 25: 371–382, 1998.

    Article  MATH  Google Scholar 

  11. E.N. Lorenz. Deterministic aperiodic flow. Journal of the Atmospheric Sciences, 20:130, 1963.

    Article  Google Scholar 

  12. E. Mammen and S. Nandi. Bootstrap and resampling. In Y. Mori J. E. Gentle, W. Härdie, editor, Handbook of Computational Statistics, pages 467–496. Springer, New York, 2004.

    Google Scholar 

  13. E. Mammen and S. Nandi. Change of the nature of a test when surrogate data are applied. Physical Review E, 70:16121–16132, 2004.

    Article  Google Scholar 

  14. M.B. Priestley. Spectral analysis and time series. Academic Press, Lon-don, 1989.

    Google Scholar 

  15. O.E. Roessler. An equation for continuous chaos. Physical Letters A, 57:397–381, 1976.

    Article  Google Scholar 

  16. T. Schreiber and A. Schmitz. Improved surrogate data for nonlinearity tests. Physical Review Letters, 77:635–638, 1996.

    Article  Google Scholar 

  17. T. Schreiber and A. Schmitz. Surrogate time series. Physica D, 142: 346–382, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  18. T. Subba Rao and M.M. Gabr. An Introduction to Bispectral Analysis and Bilinear Time Series Models. Springer, New York, 1984.

    Google Scholar 

  19. J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J.D. Farmer. Testing for nonlinearity in time series: the method of surrogate data. Physica D, 58:77–94, 1992.

    Article  Google Scholar 

  20. J. Timmer. What can be inferred from surrogate data testing? Physical Review Letters, 85:2647, 2000.

    Article  Google Scholar 

  21. H. Tong and B. Cheng. A note on the one-dimensional chaotic maps under time reversal. Advances in Applied Probability, 24:219–220, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. van der Pol. On oscillation-hysteresis in a simple triode generator. Philosophical Magazine, 43:700–719, 1922.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maiwald, T., Mammen, E., Nandi, S., Timmer, J. (2008). Surrogate Data — A Qualitative and Quantitative Analysis. In: Dahlhaus, R., Kurths, J., Maass, P., Timmer, J. (eds) Mathematical Methods in Signal Processing and Digital Image Analysis. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75632-3_2

Download citation

Publish with us

Policies and ethics