Skip to main content

Belowground Mycorrhizal Endosymbiosis and Aboveground Insects: Can Multilevel Interactions be Exploited for a Sustainable Control of Pests?

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Terrestrial plants interact with an incredible variety of organisms. Some of these interactions are beneficial, some are detrimental; some develop in the aerial part of the plant, some at root level. The study of these interactions is a precious source of information that could be used to increase plant fitness, especially plant defence against insect pests and microbial pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal AA, Karban R (1997) Domatia mediate plant arthropod mutualism. Nature 387:562-563

    CAS  Google Scholar 

  • Agrawal AA, Tuzun S, Bent E (1999) Induced plant defenses against pathogens and herbivores. APS Press, St Paul, Minnesota

    Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet army worm oral secretion. Science 276:945-949

    CAS  Google Scholar 

  • Augè RM (2001) Water relations, drought and VA mycorrhizal symbiosis. Mycorrhiza 11:3-42

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens - an overview of the mechanisms involved. Mycorrhiza 6:457-464

    Google Scholar 

  • Bais PH, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizo-sphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233-266

    PubMed  CAS  Google Scholar 

  • Balestrini R, Lanfranco L (2006) Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza 16:509-524

    PubMed  CAS  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71-82

    Google Scholar 

  • Bezemer TM, De Deyn GB, Bossinga TM, van Dam NM, Harvey JA, van der Putten WH (2005) Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecol Lett 8:652-661

    Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock C (2000) New roles for cis-jasmone as an insect semiochemical and in plant defence. Proc Natl Acad Sci USA 97:9329-9334

    PubMed  CAS  Google Scholar 

  • Birkett MA, Chamberlain K, Guerrieri E, Pickett JA, Wadhams LJ, Yasuda T (2003) Volatiles from whiteflies-infested plants elicit a host-locating response in the parasitoid Encarsia formosa. J Chem Ecol 29:1589-1600

    PubMed  CAS  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112:534-542

    Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology 82:3057-3068

    Google Scholar 

  • Borowicz VA (2006) When enemies attack do plants get by with a little help from their friends? New Phytol 169:644-646

    PubMed  Google Scholar 

  • Cipollini D, Purrington CB, Bergelson J (2003) Costs of induced responses in plants. Basic Appl Ecol 4:79-85

    Google Scholar 

  • Cloyd RA, Sadof CS (2000) Effects of plant architecture on the attack rate of Leptomastix dactylopii(Hymenoptera: Encyrtidae), a parasitoid of the citrus mealybug(Homoptera:Pseudococcidae). Environ Entomol 29:535-541

    Google Scholar 

  • Colazza S, McElfresh JS, Millar JG (2004) Identification of volatile synomones, induced by Nezara viridula feeding and oviposition on bean spp., that attract the egg parasitoid Trissolcus basalis. J Chem Ecol 30:945-964

    PubMed  CAS  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest manage-ment. Annu Rev Entomol 52:375-400

    PubMed  CAS  Google Scholar 

  • Cooper WR, Goggin FL (2005) Efects of jasmonate-induced defenses in tomato on potato aphid, Macrosiphum euphorbiae. Entomol Exp Appl 115:107-115

    CAS  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485-494

    CAS  Google Scholar 

  • Corrado G, Sasso R, Pasquariello M, Iodice L, Carretta A, Cascone P, Ariati L, Digilio MC, Guerrieri E, Rao R (2007) Systemin regulates both systemic and volatile signalling in tomato plants. J Chem Ecol 33:669-681

    PubMed  CAS  Google Scholar 

  • Dakora FD (1995) Plant flavonoids-biological molecules for useful exploitation. Aust J Plant Physiol 22:87-99

    CAS  Google Scholar 

  • David-Schwartz R, Badani H, Smadar W, Levy AA, Galili G, Kapulnik Y (2001) Identification of a novel genetically controlled step in mycorrhizal colonization: plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J 27:561-569

    PubMed  CAS  Google Scholar 

  • David-Schwartz R, Gadkar V, Wininger S, Bendov R, Galili G, Levy AA, Kapulnik Y (2003) Isolation of a premycorrhizal infection (pmi2) mutant of tomato, resistant to arbuscular mycor-rhizal fungal colonization. Mol Plant Microbe Interact 16:382-388

    PubMed  CAS  Google Scholar 

  • Dicke M, van Poecke RP, de Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4:27-42

    CAS  Google Scholar 

  • Digilio MC, Quaranta E, Voto E, De Feo V (2008) Insecticide activity of Mediterranean essential oils. J Plant Interact (in press)

    Google Scholar 

  • Ding X, Gopalakrishnan B, Lowell BJ, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S (1998) Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Research 7:77-84

    PubMed  CAS  Google Scholar 

  • Doares SH, Narváez-Vásquez J, Conconi A, Ryan C (1995) Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741-1746

    PubMed  CAS  Google Scholar 

  • Doherty HM, Selvendran RR, Bowels DJ (1988) The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol Mol Plant Pathol 33:377-384

    CAS  Google Scholar 

  • van Driesche RG, Bellows TS (1996) Biological control. Chapman and Hall, International Thomson Publishing Company

    Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (myc-) obtained in pea (Pisum sativum L.) and faba bean (Vicia faba L.). Plant Sci 60:215-222

    Google Scholar 

  • Emmanuel E, Levy AA (2002) Tomato mutants as tools for functional genomics. Curr Opin Plant Biol 5:112-117

    PubMed  CAS  Google Scholar 

  • Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM (1999) Signal interactions in pathogen and insect attack: expression of lipoxigenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato Lycopersicon esculentum. Physiol Mol Plant Path 54:97-114

    CAS  Google Scholar 

  • Filion M, St Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol 141:525-533

    Google Scholar 

  • Franken P, Requena PA (2001) Analysis of gene expression in arbuscular mycorrhizas: new approaches and challenges. New Phytol 150:517-523

    CAS  Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjær MF, Thordal-Christensen H, Pons-Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413-419

    PubMed  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:85-192

    Google Scholar 

  • Gange AC (2001) Species-specific responses of a root- and shoot-feeding insect to arbuscular mycorrhizal colonization of its host plant. New Phytol 150:611-618

    Google Scholar 

  • Gange AC, Bower E (1997) Interactions between insects and mycorrhizal fungi. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 115-132

    Google Scholar 

  • Gange AC, Nice HE (1997) Performance of the thistle gall fly, Urophora cardui, in relation to host plant nitrogen and mycorrhizal colonization. New Phytol 137:335-343

    Google Scholar 

  • Gange AC, Smith AK (2005) Arbuscular mycorrhizal fungi influence visitation rates of pollinating insects. Ecol Entomol 30:600-606

    Google Scholar 

  • Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol 128:79-87

    Google Scholar 

  • Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123-131

    Google Scholar 

  • Gange AC, Bower E, Brown VK (2002) Differential effects of insect herbivory on arbuscular mycorrhizal colonization. Oecologia 131:103-112

    Google Scholar 

  • Gange AC, Brown VK, Aplin DM (2003) Multitrophic links between arbuscular mycorrhizal fungi and insect parasitoids. Ecol Lett 6:1051-1055

    Google Scholar 

  • Gange AC, Gane DR, Chen Y, Gong M (2005) Dual colonization of Eucaliptus urophylla S.T. Blake by arbuscular and ectomycorrhizal fungi affects levels of insect herbivore attack. Agric For Entomol 7:253-263

    Google Scholar 

  • Gao LL, Knogge W, Delp G, Smith FA, Smith SE (2004) Expression patterns of defense-related genes in different types of arbuscular mycorrhizal development in wild-type and mycorrhiza-defective mutant tomato. Mol Plant Microbe Interact 17:1103-1113

    PubMed  CAS  Google Scholar 

  • García-Rodriguez S, Pozo MJ, Azcón-Aguilar C, Ferrol N (2005) Expression of tomato sugar transporter is increased in the leaves of mycorrhyzal or Phytophtora parasitica-infected plants. Mycorrhiza 15:489-496

    PubMed  Google Scholar 

  • Ghering CA, Whitham TG (2002) Mychorrizae-herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 295-320

    Google Scholar 

  • Glazebrook J, Chen W, Estes B, Chang H-S, Nawrath C, Métraux J-P, Zhu T, Katagiri F (2003) Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217-228

    PubMed  CAS  Google Scholar 

  • Gongora CE, Wang S, Barbehenn RV, Broadway RM (2001) Chitinolytic enzymes from Streptomyces albidoflavus expressed in tomato plants: effects on Trichoplusia ni. Entomol Exp Appl 99:193-204

    CAS  Google Scholar 

  • Gouinguené S, Degen T, Turlings TCJ (2001) Variability in herbivore-induced odour emissions among maize cultivars and their wild ancestors (teosinte). Chemoecology 11:9-16

    Google Scholar 

  • Goverde M, van der Heijden MGA, Wiemken A, Sanders IR, Erhardt A (2000) Arbuscular mycor-rhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362-369

    Google Scholar 

  • Gozzo F (2003) Systemic acquired resistance in crop protection: from nature to a chemical approach. J Agric Food Chem 51:4487-4503

    PubMed  CAS  Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1993) Flight behaviour of the aphid parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae) in response to plant and host volatiles. Eur J Entomol 90:415-421

    Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1997) Effect of adult experience on in-flight orientation to plant and plant-host complex volatiles in Aphidius ervi Haliday (Hymenoptera, Braconidae). Biol Control 10:159-165

    Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Tremblay E, Pennacchio F (1999) Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi (Hymenoptera: Braconidae). J Chem Ecol 25:1247-1261

    CAS  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant to plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703-1715

    PubMed  CAS  Google Scholar 

  • Guerrieri E, Lingua G, Digilio MC, Massa N, Berta G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour? Ecol Entomol 29:753-756

    Google Scholar 

  • Gupta V, Willits MG, Glazebrook J (2000) Arabidopsis thaliana EDS4 contributes to salicylic (SA)-dependent expression of defense responses: evidence for inhibition of jasmonic acid sig-naling by SA. Mol Plant Microbe Interact 13:503-511

    PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19-42

    PubMed  CAS  Google Scholar 

  • Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626-629

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9-20

    CAS  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335-344

    Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213-1220

    PubMed  CAS  Google Scholar 

  • van der Heijden MGA, Boller T, Wiemkem A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082-2091

    Article  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemkem A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity. Nature 396:69-72

    Google Scholar 

  • van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T, Wiemken A, Sanders IR (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739-752

    PubMed  Google Scholar 

  • Herdt RW (2006) Biotechnology in agriculture. Annu Rev Environ Resourc 31:265-295

    Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decom-position and acquires nitrogen directly from organic material. Nature 413:297-299

    PubMed  CAS  Google Scholar 

  • James D (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attract-ants for beneficial insects. J Chem Ecol 31:481-495

    PubMed  CAS  Google Scholar 

  • Johanson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1-13

    Google Scholar 

  • Joner EI, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under mon-oxenic conditions using radio-labelled inorganic and organic phosphate. Biotechnol Lett 22:1705-1708

    CAS  Google Scholar 

  • Kaloshian I, Walling LL (2005) Hemipterans as plant pathogens. Annu Rev Phytopatyol 43:491-521

    CAS  Google Scholar 

  • Kant MR, Ament K, Sabelis MW, Haring MA, Schuurink RC (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiol 135:483-495

    PubMed  CAS  Google Scholar 

  • Kendrick B (1992) The fifth kingdom. Mycologue Publications, Waterloo

    Google Scholar 

  • Klironomos JN (2000) Host specificity and functional diversity among arbuscular mycorrhizal fungi. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Microbial biosystems: new frontiers. Proceedings of the 8th International Symposium of Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, pp 845-851

    Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301

    Google Scholar 

  • Klironomos JN, McCune J, Moutoglis P (2004) Species of arbuscular mycorrhizal fungi affect mycorrhizal reponses to simulated herbivory. Appl Soil Ecol 26:133-141

    Google Scholar 

  • Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect defence in neighbour-ing plants. J Ecol 94:619-628

    CAS  Google Scholar 

  • Kula AAR, Harnett DC, Wilson GWT (2005) Effects of mycorrhizal symbiosis on tallgrass prairie plant-herbivore interactions. Ecol Lett 8:61-69

    Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signal pathways in pathogen defense. Curr Opin Plant Biol 5:325-331

    PubMed  CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bower R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892-903

    PubMed  CAS  Google Scholar 

  • Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597-606

    PubMed  CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompained by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529-544

    PubMed  CAS  Google Scholar 

  • Lou Y, Hua X, Turlings TCJ, Cheng J, Chen X, Ye G (2006) Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. J Chem Ecol 32:2375-2387

    PubMed  CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, van Buuren ML, Versaw WK, Harrison MJ (2002) Methods to estimate the proportion of plant and fungal RNA in an arbuscular mycorrhiza. Mycorrhiza 12:67-74

    PubMed  CAS  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89-102

    CAS  Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2006) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16:61-66

    Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1995) Beta-glucosidase - an elicitor of herbivore induced plant odor that attracts host-searching parasitic wasps. Proc Natl Acad Sci USA 92:2036-2040

    PubMed  CAS  Google Scholar 

  • McNaughton SJ, Chapin FS III (1985) Effects of phosphorous nutrition and defoliation on C4 graminoids from the Serengeti Plains. Ecology 66:1617-1629

    Google Scholar 

  • Meiners T, Wäckers F, Lewis WJ (2003) Associative learning of complex odours in parasitoid host location. Chem Senses 28:231-236

    PubMed  CAS  Google Scholar 

  • Mithöfer A, Maitrejean M, Boland W (2005) Structural and biological diversity of cyclic octade-canoids, jasmonates and mimetics. J Plant Growth Regul 23:170-178

    Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241-251

    CAS  Google Scholar 

  • Mullin CA, Al-Fatafta AA, Harman JL, Serino AA, Everett SL (1991) Corn rootworm feeding on sunflower and other Compositae - influence of floral terpenoid and phenolic factors. ACS Symp Ser 449:278-292

    CAS  Google Scholar 

  • Neumann E, George E (2005) Does the presence of arbuscular mycorrhizal fungi influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots sharing the same soil volume? New Phytol 166:601-609

    PubMed  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) proteins. Plant Cell Physiol 39:500-507

    CAS  Google Scholar 

  • Pacovsky RS, Rabin LB, Montllor CB, Waiss AC Jr (1985) Host plant resistance to insect pest altered by Glomus fasciculatum colonization. In: Molina R (ed) Proceedings of the 6th North American Conference on Mycorrhizae. Oregon State University, Corvallis, p 288

    Google Scholar 

  • Paszkowski U, Jakovleva L, Boller T (2006) Maize mutants affected at distinct stages of the arbuscular mycorrhizal symbiosis. Plant J 47:165-173

    PubMed  CAS  Google Scholar 

  • Peipp H, Maier W, Schmidt J, Wray V, Strack D (1997) Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots. Phytochemistry 44:581-587

    CAS  Google Scholar 

  • Peña-Cortés H, Albrecht T, Prat S, Weiler EW, Willmitzer L (1993) Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123-128

    Google Scholar 

  • Peña-Cortés H, Barrios P, Dorta F, Polanco V, Sánchez C, Sánchez E, Ramírez I (2005) Involvement of jasmonic acid and derivates in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23:246-260

    Google Scholar 

  • Peterson RL, Guinel FC (2000) The use of plant mutants to study regulation of colonization by AM fungi. In: Kapulnick Y, Douds Jr DD (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Press, pp 147-172

    Google Scholar 

  • Pinochet J, Calvet C, Camprubí C, Fernández C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183-190

    CAS  Google Scholar 

  • Pozo MJ, van Loon LC, Pieterse CMJ (2005) Jasmonate-signals in plant-microbe interactions. J Plant Growth Regul 23:211-222

    Google Scholar 

  • Price PW, Bouton CE, Gross P, McPheron BA, Thompson JN, Weis AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Syst 11:41-65

    Google Scholar 

  • Rabin LB, Pacovsky RS (1985) Reduced larva growth of two lepidoptera (Noctuidae) on excised leaves of soybean infected with a mycorrhizal fungus. J Econ Entomol 78:1358-1363

    Google Scholar 

  • Rassman S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TCJ (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732-737

    Google Scholar 

  • Regvar M, Gogala N, Zalar P (1996) Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytol 134:144-152

    Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740-754

    Google Scholar 

  • Rose USR, Manukian A, Heath RR, Tumlinson JH (1996) Volatile semiochemicals released from undamaged cotton leaves (a systemic response of living plants to caterpillar damage). Plant Physiol 111:487-495

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistence. Plant Cell 8:1809-1819

    PubMed  CAS  Google Scholar 

  • Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 415-437

    Google Scholar 

  • Sasso R, Iodice L, Carretta A, Digilio MC, Ariati L, Guerrieri E (2007) Identification of volatiles from tomato plants eliciting a host-locating response in the parasitoid Aphidius ervi. J Plant Interact 2:175-183

    CAS  Google Scholar 

  • Schaller F, Schaller A, Stintzi A (2005) Biosynthesis and metabolism of jasmonates. J Plant Growth Regul 23:179-199

    Google Scholar 

  • Scheublin TR, van der Heijden MGA (2006) Arbuscular mycorrhizal fungi colonize nonfixing root nodules of several legume species. New Phytol 172:732-738

    PubMed  Google Scholar 

  • Scheublin TR, van Logtestijn RSP, van der Heijden MGA (2007) Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J Ecol 4:631-638

    Google Scholar 

  • Schnee C, Köllner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006) The product of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129-1134

    PubMed  CAS  Google Scholar 

  • Scutareanu PB, Drukker B, Bruin J, Posthumus MA, Sabelis MW (1997) Isolation and identification of volatile synomones involved in the interaction between Psylla-infested pear trees and two anthocorid predators. J Chem Ecol 23:2241-2260

    CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381-395

    CAS  Google Scholar 

  • Simms EL, Fritz RS (1990) The ecology and evolution of host plant resistance to insects. Trends Ecol Evol 5:356-360

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Soler R, Harvey JA, Kamp AFD, Vet LEM, van der Putten WH, van Dam NM, Stuefer JF, Gols R, Hodijk CA, Bezemer M (2007) Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatiles. Oikos 116:367-376

    CAS  Google Scholar 

  • Staswick PE, Lehman CC (1999) Jasmonic acid-signaled responses in plants. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. APS Press, St Paul, Minnesota, pp 117-136

    Google Scholar 

  • Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955-1979

    PubMed  CAS  Google Scholar 

  • Thaler J (2000) Effect of jasmonate-induced plant responses on the natural enemies of herbivores. J Appl Ecol 71:141-150

    Google Scholar 

  • Thaler J, Fidantsef AL, Bostock RM (2002a) Antagonism between jasmonate- and salicilate-mediated induced plant resistance:effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131-1159

    PubMed  CAS  Google Scholar 

  • Thaler J, Karban R, Ullman DE, Boege K, Bostock RM (2002b) Cross-talk between jasmonate and salicylate plant defense pathways:effects on several plant parasites. Oecologia 131:227-235

    Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. J. Exp Bot 57:755-766

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. Proc Natl Acad Sci USA 89:8399-8402

    PubMed  CAS  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Heat RR, Proveaux AT, Doolittle RE (1991) Isolation and identifica-tion of allelochemicals that attract the larval parasitoid Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J Chem Ecol 17:1251-1253

    Google Scholar 

  • Turlings TCJ, Lengwiller UB, Bernasconi M, Wechsler D (1998) Timing of induced volatile emissions in maize seedlings. Planta 207:146-152

    CAS  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JP (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085-3095

    PubMed  CAS  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemicals use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141-172

    Google Scholar 

  • Vierheilig H (2004) Regulatory mechanisms during the plant-arbuscular mycorrhizal fungus interaction. Can J Bot 82:1166-1176

    CAS  Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ, Piche Y (1998) Flavonoids and arbuscular-mycorrhizal fungi. Adv Exp Med Biol 439:9-33

    PubMed  CAS  Google Scholar 

  • Wäckers FL, van Rijn PCJ, Bruin J (2005) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press

    Google Scholar 

  • Walling L (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195-216

    PubMed  CAS  Google Scholar 

  • Wamberg C, Christensen S, Jakobsen I (2003) Interaction between foliar-feeding insects, mycorrhizal fungi, and rhizosphere protozoa on pea plants. Pedobiologia 47:281-287

    Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629-1633

    PubMed  CAS  Google Scholar 

  • Wratten SD, Lavandero BI, Tylianakis J, Vattala D, Çilgi T, Sedcole R (2003) N Z Plant Prot 56:239-245

    Google Scholar 

  • Wurst S, Dugassa-Gobena D, Lange R, Bonkowski M, Scheu S (2004) Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol 163:169-176

    Google Scholar 

  • Zangerl AR (2003) Evolution of induced plant responses to herbivores. Basic Appl Ecol 4:91-103

    Google Scholar 

  • Zhang G, Zimmermann O, Hassan SA (2004) Pollen as a source of food for egg parasitoids of the genus Trichogramma (Hymenoptera: Trichogrammatidae). Biocontrol Sci Techn 14:201-209

    Google Scholar 

  • Zhu J, Park K-C (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. J Chem Ecol 31:1733-1746

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Guerrieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guerrieri, E., Digilio, M.C. (2008). Belowground Mycorrhizal Endosymbiosis and Aboveground Insects: Can Multilevel Interactions be Exploited for a Sustainable Control of Pests?. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_5

Download citation

Publish with us

Policies and ethics