Skip to main content

Molecular Methods for Studying Microbial Ecology in the Soil and Rhizosphere

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

As described throughout this book, soil and rhizosphere microorganisms are responsible for a wide range of ecosystem services, including decomposing organic matter, cycling and immobilizing nutrients, aggregating soil, filtering and bioremediating pollutants, suppressing and causing plant disease, and producing and releasing greenhouse gasses. A long-standing challenge for studies in soil and rhizosphere ecology has been developing effective methods that can be used to describe the diversity, function and abundance of soil and plant-associated microbial populations. Enormous advances have been made since the first report by Torsvik (1980) that deoxyribonucleic acids (DNA) could be extracted from soil and subsequently characterized and that there may be as many as 6000–10,000 different genomes in 1g of soil (Torsvik et al. 1990). A recent analysis based on reassociation kinetics done by Gans et al. (2005) suggests that this number is conservative and that the number of individual genomes per 1 g of soil may approach 277,000. This number far exceeds diversity estimates from any other matrix, making soil the most complex and diverse environment on earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Ludwig W (2000) Ribosomal RNA-targeted nucleic acid probes for studies in micro-bial ecology. FEMS Microbiol Rev 24:555-565.

    Article  PubMed  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143-169.

    PubMed  CAS  Google Scholar 

  • Aneja MK, Sharma S, Munch JC, Schloter M (2004) RNA fingerprinting - a new method to screen for differences in plant litter degrading microbial communities. J Microbiol Methods 59:223-231.

    Article  PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952-1966.

    Article  PubMed  CAS  Google Scholar 

  • Binnerup SJ, Bloem J, Hansen BM, Wolters W, Veninga M, Hansen M (2001) Ribosomal RNA content in microcolony forming soil bacteria measured by quantitative 16 S rRNA hybridiza-tion and image analysis. FEMS Microbiol Ecol 37:231-237.

    Article  CAS  Google Scholar 

  • Blackwood CB, Buyer JS (2007) Evaluating the physical capture method of terminal restriction fragment length polymorphism for comparison of soil microbial communities. Soil Biol Biochem 39:590-599.

    Article  CAS  Google Scholar 

  • Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: new perspectives for studying microbial communities. Mol Plant-Microbe Interact 13:1170-1176.

    Article  PubMed  CAS  Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540-4545.

    Article  PubMed  CAS  Google Scholar 

  • Bruns MA, Buckley DH (2002) Isolation and purification of microbial community nucleic acids from environmental samples. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  • Cardon ZG, Gage DJ (2006) Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Ann Rev Ecol Evol Syst 37:459-488.

    Article  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene-expression. Science 263:802-805.

    Article  PubMed  CAS  Google Scholar 

  • Chelius MK, Lepo JE (1999) Restriction fragment length polymorphism analysis of PCR-amplified nifH sequences from wetland plant rhizosphere communities. Environ Tech 20:883-889.

    Article  CAS  Google Scholar 

  • Cole JR, Chai B, Farris RJ, Wang Q, Kulam SA, McGarrell DM, Garrity GM, Tiedje JM (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33:D294-D296 doi:10.1093/nar/gki038.

    Article  PubMed  CAS  Google Scholar 

  • Costa R, Gotz M, Mrotzek N, Lottmann J, Berg G, Smalla K (2006) Effects of site and plant spe-cies on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol 56:236-249.

    Article  PubMed  CAS  Google Scholar 

  • Courtois S, Frostegard A, Goransson P, Depret G, Jeannin P, Simonet P (2001) Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells pre-viously released by density gradient centrifugation. Environ Microbiol 3:431-439.

    Article  PubMed  CAS  Google Scholar 

  • Culman SW, Duxbury JM, Lauren JG, Thies JE (2006) Microbial community response to soil solarization in Nepal’s rice-wheat cropping system. Soil Biol Biochem 38:3359-3371.

    Article  CAS  Google Scholar 

  • Devare MH, Jones CM, Thies JE (2004) Effect of Cry3Bb transgenic corn and tefluthrin on the soil microbial community: biomass, activity, and diversity. J Environ Qual 33:837-843.

    Article  PubMed  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing - linking microbial identity to function. Nat Rev Microbiol 3:499-504.

    Article  PubMed  CAS  Google Scholar 

  • Edel-Hermann W, Dreumont C, Perez-Piqueres A, Steinberg C (2004) Terminal restriction frag-ment length polymorphism analysis of ribosomal RNA genes to assess changes in fungal community structure in soils. FEMS Microbiol Ecol 47:397-404.

    Article  PubMed  CAS  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57.

    Article  PubMed  CAS  Google Scholar 

  • Ekins R, Chu FW (1999) Microarrays: their origins and applications. Trends Biotechnol 17:217-218.

    Article  PubMed  CAS  Google Scholar 

  • Errampalli D, Leung K, Cassidy MB, Kostrzynska M, Blears M, Lee H, Trevors JT (1999) Applications of the green fluorescent protein as a molecular marker in environmental micro-organisms. J Microbiol Methods 35:187-199.

    Article  PubMed  CAS  Google Scholar 

  • Felske A, Engelen B, Nübel U, Backhaus H (1999) Direct ribosome isolation from soil to extract bacterial rRNA for community analysis. Appl Environ Microbiol 62:4162-4167.

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103:626-631.

    Article  PubMed  CAS  Google Scholar 

  • Filion Mm, St-Arnaud M, Jabaji-Hare SH (2003) Direct quantification of fungal DNA from soil substrate using real-time PCR. J Microbiol Methods 53:67-76.

    Article  CAS  Google Scholar 

  • Fjellbirkeland A, Torsvik V, Ovreas L (2001) Methanotrophic diversity in an agricultural soil as evaluated by denaturing gradient gel electrophoresis profiles of pmoA, mxaF and 16 S rDNA sequences. Antonie Van Leeuwenhoek 79:209-217.

    Article  PubMed  CAS  Google Scholar 

  • Fritze H, Pennanen T, Kitunen V (1998) Characterization of dissolved organic carbon from burned humus and its effects on microbial activity and community structure. Soil Biol Biochem 30:687-693.

    Article  CAS  Google Scholar 

  • Frostegard A, Baath E, Tunlid A (1993) Shifts in the structure of soil microbial communities in limed forest as revealed by phospholipid fatty acid analysis. Soil Biol Biochem 25:723-730.

    Article  Google Scholar 

  • Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387-1390.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488-5491.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths RI, Manefield M, Ostle N, McNamara N, O’Donnell AG, Bailey MJ, Whiteley AS (2004) (CO2)-13C pulse labelling of plants in tandem with stable isotope probing: methodologi-cal considerations for examining microbial function in the rhizosphere. J Microbiol Methods 58:119-129.

    Article  PubMed  CAS  Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikow D, Stahl DA, Rittmann BE, Mirzabekov AD (1997) Oligonucleotide microchips and genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397-2402.

    PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669-685.

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2005) Metagenomics: application of genomics to uncultured microorganisms (vol 68, p 669, 2004). Microbiol Mol Biol Rev 69:195.

    Article  CAS  Google Scholar 

  • Handelsman J, Smalla K (2003) Conversations with the silent majority. Curr Opin Microbiol 6:271-273.

    Article  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245-R249.

    Article  PubMed  CAS  Google Scholar 

  • Henry S, Baudoin E, Lopez-Gutierrez JC, Martin-Laurent F, Baumann A, Philippot L (2004) Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR. J Microbiol Methods 59:327-335.

    Article  PubMed  CAS  Google Scholar 

  • Hermansson A, Lindgren PE (2001) Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Appl Environ Microbiol 67:972-976.

    Article  PubMed  CAS  Google Scholar 

  • Hurt RA, Qiu XY, Wu LY, Roh Y, Palumbo AV, Tiedje JM, Zhou JH (2001) Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol 67:4495-4503.

    Article  PubMed  CAS  Google Scholar 

  • Jiao JY, Wang HX, Zeng Y, Shen YM (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100:830-837.

    Article  PubMed  Google Scholar 

  • Jones CM, Thies JE (2007) Soil microbial community analysis using two-dimensional polyacry-lamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Methods 69:256-267.

    Article  PubMed  CAS  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of methanotrophs in soil by novel pmoA-targeted real-time PCR assays. Appl Environ Microbiol 69:2423-2429.

    Article  PubMed  CAS  Google Scholar 

  • Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283-292.

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ (1991) 16 S/23 S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115-175.

    Google Scholar 

  • Leake JR, Ostle NJ, Rangel-Castro JI, Johnson D (2006) Carbon fluxes from plants through soil organisms determined by field (CO2)-13C pulse-labelling in an upland grassland. Appl Soil Ecol 33:152-175.

    Article  Google Scholar 

  • Lee N, Halkjaer N, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M (1999) Combination of fluorescent in situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65: 1289-1297.

    PubMed  CAS  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806-809.

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualization of soil microorganisms - a review. Biol Fert Soils 39:301-311.

    Article  CAS  Google Scholar 

  • Liu WT, Stahl DA (2002) Molecular approaches for the measurement of density, diversity and phylogeny. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. American Society for Microbiology Press, Washington, DC.

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by deter-mining terminal restriction fragment length polymorphisms of genes encoding 16 S rRNA. Appl Environ Microbiol 63:4516-4522.

    PubMed  CAS  Google Scholar 

  • Lu YH, Abraham WR, Conrad R (2007) Spatial variation of active microbiota in the rice rhizo-sphere revealed by in situ stable isotope probing of phospholipid fatty acids. Environ Microbiol 9:474-481.

    Article  PubMed  CAS  Google Scholar 

  • Madani M, Subbotin SA, Moens M (2005) Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Mol Cell Probes 19:81-86.

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002a) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367-5373.

    Article  PubMed  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Ostle N, Ineson P Bailey MJ (2002b) Technical considerations for RNA-based stable isotope probing: an approach to associating microbial diversity with micro-bial community function. Rapid Comm Mass Spec 16:2179-2183.

    Article  CAS  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen ZT, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu PG, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380.

    PubMed  CAS  Google Scholar 

  • Marsh TL (2005) Culture-independent microbial community analysis with terminal restriction fragment length polymorphism. Methods Enzymol 397:308-329.

    Article  PubMed  CAS  Google Scholar 

  • McDonald IR, Radajewski S, Murrell JC (2005) Stable isotope probing of nucleic acids in meth-anotrophs and methylotrophs: a review. Org Geochem 36:779-787.

    Article  CAS  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase catalysed chain reaction. Methods Enzymol 155:335-350.

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127-141.

    Article  PubMed  CAS  Google Scholar 

  • Nakatsu CH (2007) Soil microbial community analysis using denaturing gradient gel electro-phoresis. Soil Sci Soc Am J 71:562-571.

    Article  CAS  Google Scholar 

  • NCBI News (2006/2007) National Center for Biotechnology Information 15(2):2.

    Google Scholar 

  • Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710-5718.

    Article  PubMed  CAS  Google Scholar 

  • Neufeld JD, Yu ZT, Lam W, Mohn WW (2004) Serial analysis of ribosomal sequence tags (SARST): a high-throughput method for profiling complex microbial communities. Environ Microbiol 6:131-144.

    Article  PubMed  CAS  Google Scholar 

  • Nicol GW, Schleper C (2006) Ammonia-oxidising Crenarchaeota: important players in the nitro-gen cycle? Trends Microbiol 14:207-212.

    Article  PubMed  CAS  Google Scholar 

  • Ouverney CC, Fuhrman JA (1999) Combined microautoradiography-16 S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl Environ Microbiol 65:1746-1752.

    PubMed  CAS  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea-victoria green-fluorescent protein. Gene 111:229-233.

    Article  PubMed  CAS  Google Scholar 

  • Radajewski S, McDonald IR, Murrell JC (2003) Stable-isotope probing of nucleic acids: a win-dow to the function of uncultured microorganisms. Curr Opin Biotechnol 14:296-302.

    Article  PubMed  CAS  Google Scholar 

  • Rangel-Castro JI, Killham K, Ostle N, Nicol GW, Anderson IC, Scrimgeour CM, Ineson P, Meharg A, Prosser JI (2005) Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol 7:828-838.

    Article  PubMed  CAS  Google Scholar 

  • Rondon MR, August PR, Betterman AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNiel IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541-2547.

    Article  PubMed  CAS  Google Scholar 

  • Roslev P, Iversen N, Henriksen K (1998) Direct fingerprinting of metabolically active bacteria in environmental samples by substrate specific radiolabelling and lipid analysis. J Microbiol Methods 31:99-111.

    Article  CAS  Google Scholar 

  • Rotthauwe J-H, Witzel K-P, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704-4712.

    PubMed  CAS  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA-polymerase. Science 239:487-491.

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining opera-tional taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501-1506.

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006a) Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl Environ Microbiol 72:6773-6779.

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2006b) Introducing TreeClimber, a test to compare microbial com-munity structures. Appl Environ Microbiol 72:2379-2384.

    Article  PubMed  CAS  Google Scholar 

  • Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U (2002) RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 51:171-179.

    Article  PubMed  CAS  Google Scholar 

  • Smalla K, Sobecky PA (2002) The prevalence and diversity of mobile genetic elements in bacte-rial communities of different environmental habitats: insights gained from different methodo-logical approaches. FEMS Microbiol Ecol 42:165-175.

    Article  PubMed  CAS  Google Scholar 

  • Thies JE (2007a) Molecular methods for studying the soil biota. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 3rd edn. Academic Press. Elsevier, Oxford, pp 85-118.

    Google Scholar 

  • Thies JE (2007b) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579-591.

    Article  CAS  Google Scholar 

  • Thies JE, Grossman JM (2006) The soil habitat and soil ecology. In: Uphoff N, Ball AS, Fernandes E, Herren H, Husson O, Laing M, Palm C, Pretty J, Sanchez P, Sanginga N, Thies J (eds) Biological approaches to sustainable soil systems. CRC Press, Taylor and Francis Group, Boca Raton, pp 59-78.

    Google Scholar 

  • Torsvik VL (1980) Isolation of bacterial-DNA from soil. Soil Biol Biochem 12:15-21.

    Article  CAS  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240-245.

    Article  PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782-787.

    PubMed  CAS  Google Scholar 

  • Torsvik V, Daae FL, Sandaa RA, Ovreas L (1998) Novel techniques for analysing microbial diver-sity in natural and perturbed environments. J Biotechnol 64:53-62.

    Article  PubMed  CAS  Google Scholar 

  • Treonis AM, Ostle NJ, Stott AW, Primrose R, Grayston SJ, Ineson P (2004) Identification of groups of metabolically-active rhizosphere microorganisms by stable isotope probing of PLFAs. Soil Biol Biochem 36:533-537.

    Article  CAS  Google Scholar 

  • Treusch AH, Leininger S, Kletzin A, Schuster SC, Klenk HP, Schleper C (2005) Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic Crenarchaeota in nitrogen cycling. Environ Microbiol 7:1985-1995.

    Article  PubMed  CAS  Google Scholar 

  • Tunlid A, White DC (1992) Biochemical analysis of biomass, community structure, nutritional status and metabolic activity of microbial communities in soil. Soil Biochem 7:229-262.

    CAS  Google Scholar 

  • Ward DM (1998) A natural species concept for prokaryotes. Curr Opin Microbiol 1:271-277.

    Article  PubMed  CAS  Google Scholar 

  • Wellington EMH, Berry A, Krsek M (2003) Resolving functional diversity in relation to microbial community structure in soil: exploiting genomics and stable isotope probing. Curr Opin Microbiol 6:295-301.

    Article  PubMed  CAS  Google Scholar 

  • Wintzingerode Fv, Gobel UV, Stackebrandt E (1997) Determination of microbial diversity in envi-ronmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213-229.

    Article  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221-271.

    PubMed  CAS  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 87:4576-4579.

    Article  PubMed  CAS  Google Scholar 

  • Wu LY, Thompson DK, Li GS, Hurt RA, Tiedje JM, Zhou JZ (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780-5790.

    Article  PubMed  CAS  Google Scholar 

  • Xi C, Lambrecht M, Vanderleyden J, Michiels J (1999) Bi-functional gfp-and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J Microbiol Methods 35:85-92.

    Article  PubMed  CAS  Google Scholar 

  • Zhou JZ (2003) Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:88-294.

    Article  CAS  Google Scholar 

  • Zhou JZ, Thompson DK (2002) Challenges in applying microarrays to environmental studies. Curr Opin Biotech 13:204-207.

    Article  PubMed  CAS  Google Scholar 

  • Zwirglmaier K (2005) Fluorescence in situ hybridisation (FISH) - the next generation. FEMS Microbiol Lett 246:151-158.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice E. Thies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thies, J.E. (2008). Molecular Methods for Studying Microbial Ecology in the Soil and Rhizosphere. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_17

Download citation

Publish with us

Policies and ethics