Skip to main content

Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

The rhizosphere is the soil volume at the root-soil interface that is under the influence of the plant roots and the term was introduced by Hiltner in 1904 (Brimecombe et al. 2001). Microbial population in the rhizosphere has continuous access to a flow of low and high molecular weight organic substrates derived from roots. This continuous flow of organic compounds may affect together with specific physiochemical and biological conditions microbial activity and community structure of the rhizosphere soil (Sorensen 1997; Brimecombe et al. 2001). Current techniques still lack the adequate sensitivity and resolution for data collection at the micro-scale, and the question ‘How important are various soil processes acting at different scales for ecological function?’ is therefore challenging to answer. The nano-scale secondary ion mass spectrometer (NanoSIMS) represents the latest generation of ion microprobes, which link high-resolution microscopy with isotopic analysis. Recently Herrmann et al. (2007) have described the principles of NanoSIMS and discusses the potential of this tool to contribute to the field of biogeochemistry and soil ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahrenholtz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on hair roots of transgenic T4 lysozyme-producing potatoes. Appl Environ Microbiol 66:1862-1865.

    PubMed  Google Scholar 

  • Badalucco L, Kuikman PJ (2001) Mineralization and immobilization in the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic sub-stances at the soil-plant interface. Marcel Dekker, New York, pp 141-196.

    Google Scholar 

  • Badalucco L, Kuikman PJ, Nannipieri P (1996) Protease and deaminase activities in wheat rhizo-sphere and their relation to bacterial and protozoan populations. Biol Fertil Soils 23:99-104.

    Google Scholar 

  • Bakken LR (1997) Culturable and nonculturable bacteria in soil. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 47-61.

    Google Scholar 

  • Bardgett RD, Walker LR (2004) Impact of coloniser plant species on the development of decom-poser microbial communities following deglaciation. Soil Biol Biochem 36:555-559.

    Google Scholar 

  • Barraclough D (1997) The direct or MIT route for nitrogen immobilization: a 15N mirror image study with leucine and glycine. Soil Biol Biochem 29:101-108.

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial com-munity structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183-1192.

    Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328-3338.

    PubMed  Google Scholar 

  • Blackwood CB, Paul EA (2003) Eubacterial community structure and population size within the soil light fraction, rhizosphere, and heavy fraction of several agricultural systems. Soil Biol Biochem 35:1245-1255.

    Google Scholar 

  • Brimecombe MJ, De Lelj FA, Lynch JM (2001) The rhizosphere. The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizo-sphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 95-140.

    Google Scholar 

  • Briones AM, Satoshi O, Yoshiaki U, Niels-Birger R, Wolfgang R, Hidetoshi O (2003) Ammonia-oxidising bacteria on root biofilms and their possible contribution to N use efficiency of dif-ferent rice cultivars. Plant Soil 250:335-348.

    Google Scholar 

  • Burns RG (1982) Enzyme activity in soil: location and a possible role in microbial ecology. Soil Biol Biochem 14:423-427.

    Google Scholar 

  • Casavant NC, Thompson D, Beattle GA, Phillips GJ, Halverson LJ (2003) Use of a site-specific recombination-based biosensor for detecting bioavailable toluene and related compounds on roots. Environ Microbiol 5:238-249.

    PubMed  Google Scholar 

  • Chander K, Joergensen RG (2001) Decomposition of 14C glucose in two soils with different amounts of heavy metal contamination. Soil Biol Biochem 33:1811-1816.

    Google Scholar 

  • Chen MM, Zhu YG, Su YH, Chen BD, Fu BJ, Marschner P (2007) Effects of soil moisture and plant interactions on the soil microbial community structure. Eur J Soil Biol 43:31-38.

    Google Scholar 

  • Cheng W, Coleman DC, Carrol CR, Hoffman CA (1993). In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biol Biochem 25:1189-1196.

    Google Scholar 

  • Cheng W, Zhang Q, Coleman D (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283-1288.

    Google Scholar 

  • Christensen H, Christensen S (1994) 3H-thymidine incorporation of rhizosphere bacteria influ-enced by plant N-status. Plant Soil 162:113-116.

    Google Scholar 

  • Clarholm M (1985) Interactions of bacteria, protozoa, and plants leading to mineralization of soil nitrogen . Soil Biol Biochem 17:181-187.

    Google Scholar 

  • Cocking EC (2003) Endophytic colonisation of plant roots by nitrogen-fixing bacteria. Plant Soil 252:169-175.

    Google Scholar 

  • Darrah PR(1996) Rhizodeposition under ambient and elevated CO2 levels. Plant Soil 187:265-275.

    Google Scholar 

  • Darrah PR, Roose T (2001) Modeling the rhizosphre. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 327-372.

    Google Scholar 

  • De Angelis KM, Ji P, Firestone MK, Lindow SE (2005) Two novel bacterial biosensors for detec-tion of nitrate availability in the rhizosphere. Appl Environ Microbiol 71:8537-8547.

    Google Scholar 

  • De Nobili M, Contin M, Mondini C, Brookes PC (2001) Soil microbial biomass is triggered into activity by trace amounts of substrate. Soil Biol Biochem 33:1163-1170.

    Google Scholar 

  • De Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, van een JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349-357.

    Google Scholar 

  • De Vries J, Harms K, Broer Mahn A, During K, Wachernagel W (1999) The bacteriolyitc activity in transgenic potatoes expressing a chimeric T4 lysozyme gene and the effect of T4 lysozyme on soil- and phytopathogenic bacteria Syst Appl Microbiol 22:280-286.

    Google Scholar 

  • Degens BP, Harris JA (1997) Development of a physiological approach to measuring the catabolic diversity of soil microbial communities. Soil Biol Biochem 29:1309-1320.

    Google Scholar 

  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J Appl Ecol 36:920-936.

    Google Scholar 

  • Dunfield KE, Germida J (2001) Diversity of microbial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1-9.

    Google Scholar 

  • Dunfield KE, Germida J (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus) Appl Environ Microbiol 69:7310-7318.

    PubMed  Google Scholar 

  • Espinosa-Urgel M, Ramos JL (2001) Expression of a Pseudomonas putida involved in lysine metabolism is induced in the rhizosphere. Appl Environ Microbiol 67:5219-5224.

    PubMed  Google Scholar 

  • Falchini L, Naumova N, Kuikman PJ, Bloem J, Nannipieri P (2003) CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol Biochem 36:775-782.

    Google Scholar 

  • Farrar J, Haes D, Jones D, Lindow S (2003) How roots control the flux of carbon to the rhizo-sphere Ecology 84:827-837.

    Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837-843.

    Google Scholar 

  • Foster RC, Rovira AD, Cock TW (1983) Ultrastructure of the root-soil interface, American Phytopathological Society, St. Paul, MN, USA.

    Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterisation of heterotrophic microbial com-munities on the basis of patterns of community-level-sole-carbon-source-utilization. Appl Environ Microbiol 57:2351-2359.

    PubMed  Google Scholar 

  • George TS, Richardson AE, Hadobas PA, Simpson RJ (2004) Characterization of transgenic Trifolium subterraneum L which expresses phyA and release extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351-1361.

    Google Scholar 

  • George TS, Richardson AE, Simpson RJ (2005) Behaviour of plant-derived extracellular phytase upon addition to soil. Soil Biol Biochem 37:977-988.

    Google Scholar 

  • Gianfreda L, Ruggiero P (2006) Enzyme activities in soil. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin Heidelberg New York, pp 257-311.

    Google Scholar 

  • Gomes NCM (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758-3766.

    PubMed  Google Scholar 

  • Gomes NCM, Heuer H, Schonfeld J, Costa R, Hagler-Mendoca L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 233:167-180.

    Google Scholar 

  • Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendonc L, Hagler A, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69:3758-3766.

    PubMed  Google Scholar 

  • Göttlein A, Hell U, Blasek R (1996) A system for microscale tensiometry and lysimetry. Geoderma 69:147-156.

    Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutri-ent availability. Appl Soil Ecol 5:29-56.

    Google Scholar 

  • Griffiths BS (1990) A comparison of microbial-feeding nematodes and protozoa in the rhizo-sphere of different plants. Biol Fertil Soils 9:83-88.

    Google Scholar 

  • Hamer U, Marschner B (2005) Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol Biochem 37:445-454.

    Google Scholar 

  • Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397-2402.

    Google Scholar 

  • Hawes MC, Lin HJ (1990) Correlation of pectolytic enzyme activity with the programmed release of cells from root caps of pea (Pisum sativum). Plant Physiol 94:1855-1859.

    PubMed  Google Scholar 

  • Hawes MC, Bengough G, Cassab G, Ponce G (2003) Root caps and rhizosphere. J Plant Growth Regul 21:352-367.

    Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007) Nano-scale secondary ion mass spectrometry — a new analytical tool in biogeochemistry and soil ecology. Soil Biol Biochem 39:1835-1850.

    Google Scholar 

  • Heuer H, Smalla K (1997) Evaluation of community level catabolic profiling using BIOLOG GN microplates to study microbial community changes in potato phyllosphere. J Microbiol Methods 30:49-61.

    Google Scholar 

  • Heuer H, Hartung K, Wieland G, Kramer I, Smalla K (1999) Polynucleotide probes that target a hypervariable region of 16 S rRNA genes to identify bacterial isolates corresponding to bands of community fingerprints. Appl Environ Microbiol 65:1045-1049.

    PubMed  Google Scholar 

  • Hinsinger P, Gilkes RJ (1997) Dissolution of phosphate rock in the rhizosphere of five plant spe-cies grown in an acid, P-fixing mineral substrate. Geoderma 75:231-249.

    Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signal and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858-868.

    Google Scholar 

  • Hodge A, Robinson D, Fitter AH (2000) Are microorganisms more effective than plants at com-peting for nitrogen? Trends Plant Sci 5:304-308.

    PubMed  Google Scholar 

  • Hyvönen R, Göran IÅ, Linder S, Persson TM, Cotrufo F, Ekblad A, Freeman M, Grelle A, Janssens JA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, van Oijen M, Wallin G (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463-480.

    PubMed  Google Scholar 

  • Idriss EI, Makarewicz O, Farouk A, Rosner K, Greiner R, Bochow H, Ritcher T, Borriss R (2002) Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097-2109.

    PubMed  Google Scholar 

  • Iijima M, Griffiths B, Bengough AG (2000) Sloughing of cap cells and carbon exudation from maize seedlin roots in compacted sand. New Phytol 145:477-482.

    Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685-2690.

    PubMed  Google Scholar 

  • Jasper MCM, Meier C, Zehnder AJB, Harms H, van der Meer JR (2001) Measuring mass transfer processes of octane with the help of an alkS-alkB gfp-tagged Escherichia coli. Environ Microbiol 3:512-524.

    Google Scholar 

  • Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitro-gen - the so-called “priming” effect. J Soil Sci 36:425-444.

    Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils-a review Biol Fertil Soils 33:443-453.

    Google Scholar 

  • Johnson JF, Allan DL, Vance CP, Weiblen G (1996) Root carbon dioxide fixation by phosphorus deficient Lupinus albus. Contribution to organic acid exudation by proteoid roots. Plant Physiol 112:19-30.

    PubMed  Google Scholar 

  • Jones DL, Darrah PR (1993) Re-sorption of organic compounds by roots of Zea mays L. and its consequences in the rhizosphere: I. Re-sorption of 14C labelled glucose, mannose and citric acid. Plant Soil 153:47-59.

    Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants-an important N uptake pathway? Soil Biol Biochem 37:413-423.

    Google Scholar 

  • Kamh M, Horst WJ, Amer F, Mostafa H, Maier P (1999) Mobilization of soil and fertilizer phos-phate by cover crops. Plant Soil 211:19-27.

    Google Scholar 

  • Keister DL, Creagan PB (1991) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kim J, Verma SB (1992) Soil surface CO2 flux in a flux in a Minnesota peatland. Biogeochem 18:37-51.

    Google Scholar 

  • Kourtev PS, Ehrenfed JG, Häggblom M (2003) Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities. Soil Biol Biochem 35:895-905.

    Google Scholar 

  • Kowalchuk GA (1999) New perspectives towards analysing fungal communities in terrestrial environments. Curr Opin Biotechnol 10:247-251.

    PubMed  Google Scholar 

  • Kowalchuk GA, Gerards S, Woldendorp JW (1997) Detection and characterization of fungal infections of Ammophila arenaria (marram grass) roots by denaturing gradient gel electro-phoresis of specifically amplified 18 S rDNA. Appl Environ Microbiol 63:3858-3865.

    PubMed  Google Scholar 

  • Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol Evol 18:403-410.

    Google Scholar 

  • Kozdroj J, van Elsas JD (2000) Response of the bacterial community to root exudates in soil pol-luted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405-1417.

    Google Scholar 

  • Kuchenbuch R, Jungk A (1982) Method for determining concentration profiles at the soil root interface by thin slicing rhizospheric soil. Plant Soil 68:391-394.

    Google Scholar 

  • Kuikman PJ, Jansen AG, vanVeen JA, Zehnder JB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10:22-28.

    Google Scholar 

  • Kuske CR, Lawrence OT, Mark EM, John MD, Jody AD, Susan MB, Jayne B (2002) Comparison of soil bacterial communities in rhizosphere of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854-1863.

    PubMed  Google Scholar 

  • Kuzyakov Y (2002a) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382-396.

    Google Scholar 

  • Kuzyakov Y (2002b) Separating microbial respiration of exudates from root respiration in a non-sterile soil: a comparison of four methods. Soil Biol Biochem 34:1621-1651.

    Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic mat-ter decomposition. Soil Biol Biochem 33:1915-1925.

    Google Scholar 

  • Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485-1498.

    Google Scholar 

  • Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Stotzky G, Bollag J-M (eds) Soil biochemistry, vol 9. Marcel Dekker, New York, pp 23-78.

    Google Scholar 

  • Landi L, Valori F, Ascher J, Renella G, Falchini L, Nannipieri P (2005) Root exudates effects on the bacterial communities, CO2 evolution, nitrogen transformations and ATP content of rhizosphere and bulk soils. Soil Biol Biochem 38:509-516.

    Google Scholar 

  • Li X, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae soil interfaces of VA mycorhizal white clover fertilized with ammonium. New Phytol 119:397-404.

    Google Scholar 

  • Li Z, Yagi K (2004) Rice root-derived carbon input and its effect on decomposition of old soil carbon pool under elevated CO2. Soil Biol Biochem 36:1967-1973.

    Google Scholar 

  • Liljeroth E, van Veen JA, Miller HJ (1990) Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilization by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol Biochem 2:1015-1021.

    Google Scholar 

  • Liljeroth E, Kuikamn PJ, van Veen JA (1994) Carbon translocation to the rhizosphere of maize and wheat and influence of the turnover of native soil organic matter at different soil nitrogen levels Plant Soil 161:233-240.

    Google Scholar 

  • Lung S-C, Chan W-L, Yip W, Wang L, Yeung EC, Lim BL (2005) Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization. Plant Sci 169:341-349.

    Google Scholar 

  • Lynch JM (1990a) The rhizosphere. Wiley, New York.

    Google Scholar 

  • Lynch JM (1990b) Microbial metabolites. In: Lynch JM (ed) The rhizosphere. Academic Press, London, pp 177-206.

    Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhizosphere. In: Keister DL, Creagan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 15-45.

    Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti PM, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363-385.

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London.

    Google Scholar 

  • Marschner P, Yang C-H, Lieberei R, Crowley DE (2001) Soil plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437-1445.

    Google Scholar 

  • Marschner P, Günter N, Angelika K, Laure W, Reinhard L (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167-174.

    Google Scholar 

  • Marschner P, Grierson P, Rengel Z (2005) Microbial community composition and functioning in the rhizosphere of three species of Banksia species in native woodland in western Australia. Appl Soil Ecol 28:191-201.

    Google Scholar 

  • Mary B, Fresneau C, Morel L, Mariotti A (1993) C and N cycling during decomposition of root mucilage, roots and glucose in soil. Soil Biol Biochem 25:1005-1014.

    Google Scholar 

  • Maurhofer M, Baehler E, Notz R, Martinez V, Keel C (2004) Cross talk between 2,4-diacetylphlo-roglucinol- producing biocontrol pseudomonads on wheat roots. Appl Environ Microbiol 70:1990-1998.

    PubMed  Google Scholar 

  • McCully M (1989) Cell separation: a developmental feature of root caps which may be of funda-mental functional significance. In: Osborne DJ, Jackson MB (eds) Cell separation in plants. Springer, Berlin Heidelberg New York, pp 241-280.

    Google Scholar 

  • McCully M (1995) How do real roots work? Some new views of root structure. Plant Physiol 109:1-6.

    PubMed  Google Scholar 

  • Merckx R, Dijkstra A, den Hartog A, van Veen JAA (1987) Production of root-derived material and associated microbial growth in soil at different nutrient levels. Biol Fertil Soils 5:126-132.

    Google Scholar 

  • Miethling R, Ahrends K, Tebbe CC (2003) Structural differences in the rhizosphere communities of legumes are not equally reflected in community-level physiological profiles Soil Biol Biochem 35:1405-1410.

    Google Scholar 

  • Morgan JAW, Whipps JM (2001) Methodological approaches to the study of rhizosphere carbon flow and microbial population dynamics. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 373-409.

    Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek J Microbiol Serol 73:127-141.

    Google Scholar 

  • Nannipieri P (1994) The potential use of enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota - management in sustainable farming systems. CSIRO, East Melbourne Australia, pp 238-244.

    Google Scholar 

  • Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of the biological activity in soil. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 6. Marcel Dekker, New York, pp 293-355.

    Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and bio-chemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1-33.

    Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655-670.

    Google Scholar 

  • Naseby DC, Lynch JM (1997) Rhizosphere soil enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol Biochem 29:1353-1362.

    Google Scholar 

  • Naseby DC, Lynch JM (1998) Impact of wild-type and genetically modified Pseudomonas fluo-rescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol Ecol 7:617-625.

    Google Scholar 

  • Naseby DC, Lynch JM (2002) Enzymes and microorganisms in the rhizosphere. In: Burns RG, Dick RP (eds) Enzymes in the environment. Activity, ecology and applications. Marcel Dekker, New York, pp 109-123.

    Google Scholar 

  • Naseby DC, Moënne-Loccoz JP, O’Gara F, Lynch JM (1998) Soil enzyme activities in the rhizo-sphere of field-grown sugar beet inoculated with the biocontrol agent Pseudomonas fluores-cens F113. Biol Fertil Soils 27:39-43.

    Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by plant’s physiological status. In: Pinton R, Varanini Z, Nannipieri P (eds) Marcel Dekker, New York, pp 41-93.

    Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Römheld V (1999) Physiological adaptations to phos-phorus deficiency during proteoid root development in white lupin. Planta 208:373-382.

    Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Spatial analysis of archaeal community structure in grassland soil. Appl Environ Microbiol 69:7420-7429.

    PubMed  Google Scholar 

  • Niemi RM, Heiskanen I, Wallenus K, Lindström K (2001) Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia. J Microbial Methods 45:155-165.

    Google Scholar 

  • Norton JM, Firestone MK (1996) N dynamics in the rhizosphere of Pinus ponderosa seedling. Soil Biol Biochem 28:351-362.

    Google Scholar 

  • Norvel WA, Cary EE (1992) Potential errors caused by roots in analyses of rhizosphere soil. Plant Soil 143:223-231.

    Google Scholar 

  • Nunan N, Daniell TJ, Singh BK, Papert A, McNicol JW, Prosser JI (2005) Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular tech-niques. Appl Environ Microbiol 71:6784-6792.

    PubMed  Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887-2894.

    PubMed  Google Scholar 

  • Pinay G, Barbera P, Carreras-Palou A, Fromin N, Sonié L, Couteaux MM, Roy J, Philippot L, Lensi R (2007) Impact of atmospheric CO2 and plant life forms on soil microbial activities Soil Biol Biochem 39:33-42.

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York.

    Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2002) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. CRC press, Boca Raton, Fl. Second edition.

    Google Scholar 

  • Prikryl Z, Vancura V (1980) Root exudates in plants. VI Wheat exudation as dependent on growth, concentration gradient of exudates and the presence of bacteria. Plant Soil 57:69-83.

    Google Scholar 

  • Qian JH, Doran JW, Walters DT (1997) Maize plant contributions to root zone available carbon and microbial transformations of nitrogen. Soil Biol Biochem 29:1451-1462.

    Google Scholar 

  • Raich JW, Mora G (2005) Estimating root plus rhizosphere contributions to soil respiration in annual cropland. Soil Sci Soc Am J 69:634-639.

    Google Scholar 

  • Renella G, Michel M, Landi L, Nannipieri P (2005) Microbial activity and hydrolase activities during decomposition of model root exudates released by a model root surface in Cd-contaminated soils. Soil Biol Biochem 37:133-139.

    Google Scholar 

  • Richardson AE, Hadobas PA, Hayes JE (2001) Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. Plant J 25:641-649.

    PubMed  Google Scholar 

  • Rochette P, Flanagan LB (1997) Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci Soc Am J 61:466-474.

    Google Scholar 

  • Seeling B, Jungk A (1996) Utilization of organic phosphorus in calcium chloride extracts of soil by barley plants and hydrolysis and alkaline phosphatases Plant Soil 178:179-184.

    Google Scholar 

  • Sharma S, Radl V, Hai B, Kloos K, Fuka MM, Engel M, Schauss K, Schloter M (2007) Quantification of functional genes from procaryotes in soil by PCR. J Microbiol Methods 68:445-452.

    PubMed  Google Scholar 

  • Sliwinski MK, Goodman RM (2004) Comparison of Crenarchael consortia inhabiting the rhizo-sphere of diverse terrestrial plants with those in bulk soil in native environments. Appl Environ Microbiol 70:1821-1826.

    PubMed  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742-4751.

    PubMed  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18 S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614-2621.

    PubMed  Google Scholar 

  • Söderberg KH, Bååth E (2004) The influence of nitrogen fertilisation on bacterial activity in the rhizosphere of barley. Soil Biol Biochem 36:195-198.

    Google Scholar 

  • Sorensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 21-45.

    Google Scholar 

  • Stark C, Condron LM, Stewart A, Di HJ, O’Callaghan M (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79-93.

    Google Scholar 

  • Talbot NJ (2003) Functional genomics of plant-pathogen interactions. New Phytol 159:1-10.

    Google Scholar 

  • Tarafdar JC, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199-204.

    Google Scholar 

  • Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and hyposphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus Soil Biol Biochem 26:387-395.

    Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York.

    Google Scholar 

  • Torsvik V, Øvreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240-245.

    PubMed  Google Scholar 

  • Torsvik V, Sørheim R, Gorksøyr J (1996) Total bacterial diversity in soil and sediment communi-ties-a review. J Ind Microbiol 17:170-178.

    Google Scholar 

  • Trofymow JA, Coleman DC, Cambardella C (1987) Rates of rhizodeposition and ammonium depletion in the rhizosphere of axenic oat roots. Plant Soil 97:333-344.

    Google Scholar 

  • Uren NC (2007) Types, amounts, and possible function of compounds released into the rhizo-sphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York (pp 1-21).

    Google Scholar 

  • Uren NC, Reisenauer HM (1988) The role of root exudates in nutrient acquisition. Adv Plant Nutr 3:79-144.

    Google Scholar 

  • Valè M, Nguyen C, Dambrine E, Dupouey JL (2005) Microbial activity in the rhizosphere soil of six herbaceous species cultivated in a greenhouse is correlated with shoot biomass and root C concentrations. Soil Biol Biochem 37:2329-2333.

    Google Scholar 

  • Van der Krift TAJ, Kuikman PJ, Moller F, Berendse F (2001) Plant species and nutritional-mediated control over rhizodeposition and root decomposition. Plant Soil 228:191-200.

    Google Scholar 

  • Vandenkoornhuyse P, Baldauf SL, Leyval C, Straczek J, Young JP (2003) Extensive fungal diversity in plant roots. Science 295:2051.

    Google Scholar 

  • Waisel Y, Eshel A, Kafkafi U (1991) Plant roots. The hidden half. Marcel Dekker, New York.

    Google Scholar 

  • Warembourg FR, Roumet C, Lafont F (2003) Differences in rhizosphere carbon-partitioning among plant species of different families. Plant Soil 256:347-357.

    Google Scholar 

  • Wasaki J, Ando M, Ozawa K, Omura M, Osaki M, Ito H, Matsui H, Tadano T (1997) Properties of secretory acid phosphatase from lupin roots under phosphorus-deficient conditions. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 295-300.

    Google Scholar 

  • Wenzel WW, Wieshammer G, Fitz WJ, Puschenreiter M (2001) Novel rhizobox design to assess rhizosphere characteristics at high spatial resolution. Plant Soil 237:37-45.

    Google Scholar 

  • Whipps JM (1990) Carbon economy. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 59-97.

    Google Scholar 

  • Zagal E, Bjarnason S, Olsson UFL (1993) Carbon and nitrogen in the root-zone of barley (Hordeum vulgare L) supplied with nitrogen fertilizer at two rates. Plant Soil 157:51-63.

    Google Scholar 

  • Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil: a review. Biol Fertil Soils 29:111-112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Nannipieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nannipieri, P. et al. (2008). Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_14

Download citation

Publish with us

Policies and ethics