Skip to main content

Signals in the Underground: Microbial Signaling and Plant Productivity

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Green plants are the vehicle by which virtually all energy enters the terrestrial biosphere. The rhizosphere is the first place where other organisms have a chronic access to this energy source and therefore an area of intense biological activity. Plants exude about 40% of photosynthates into the rhizosphere which makes it energy rich (Lynch and Whipps 1991). Due to the availability of substrates for metabolism, the rhizosphere is able to support large populations of microbes such as bacteria, actinomyctes, fungi, protozoa, algae, and viruses, etc. These rhizosphere inhabiting microorganisms compete for water, nutrients and space and sometimes improve their competitiveness by developing an intimate association with the plant. The rhizosphere can also be a battlefield among these microorganisms, with continuous competition and hostility among its inhabitants. The victors sometimes affect plant growth and development. However, it is becoming increasingly clear that establishment of the association between rhizobacteria and plants depends upon an exchange of signal molecules and it is during this initial signal exchange that plants and bacteria sometimes accept or reject each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytol 95:381-396.

    Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1-8.

    CAS  Google Scholar 

  • Atkinson EM, Palcic MM, Hindsgaul O, Long SR (1994) Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA 91:8418-8422.

    PubMed  CAS  Google Scholar 

  • Bakker PAHM, Ran LX, Pieterse CMJ, van Loon LC (2003) Understanding the involvement of rhizobacteria mediated induction of systemic resistance in biocontrol of plant diseases. Can J Plant Pathol 25:5-9.

    Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Presto CA (2006) Volatile signaling in plant-plant interactions: “Talking Trees” in the genomics era. Science 311:812-815.

    PubMed  CAS  Google Scholar 

  • Bashan Y, Levanoy H (1990) Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591-608.

    CAS  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expres-sion and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537-1543.

    PubMed  CAS  Google Scholar 

  • Bender CL, Alarcon-Chaidez F, Gross DC (1999a) Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthesases. Microbiol Mol Biol Rev 63:266-292.

    PubMed  CAS  Google Scholar 

  • Bender C, Rangaswamy V, Loper J (1999b) Polyketide production by plant-associated pseu-domonads. Annu Rev Phytopathol 37:175-196.

    PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343-350.

    PubMed  CAS  Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Dobereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111-117.

    Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1-102.

    Google Scholar 

  • Broughton WJ, Zhang F, Perret X, Staehelin C (2003) Signals exchanged between legumes and Rhizobium: agricultural uses and perspectives. Plant Soil 252:129-137.

    CAS  Google Scholar 

  • Burkert B, Robson A (1994) 65Zn uptake in subterranean clover (Trifolium subterraneum L.) by three vesicular-arbuscular mycorrhizal fungi in a root-free sandy soil. Soil Biol Biochem 26:1117-1124.

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865-871.

    PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164-3169.

    PubMed  CAS  Google Scholar 

  • Campbell BGM, Thomson JA (1996) 1-Aminocyclopropane-1-carboxylate deaminase genes from Pseudomonas strains. FEMS Microbiol Lett 138:207-210.

    PubMed  CAS  Google Scholar 

  • Chanway CP, Nelson LM (1990) Field and laboratory studies of Triticum aestivum L. inoculated with co-existent growth-promoting Bacillus strains. Soil Biol Biochem 22:789-795.

    Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonis-tic to fungal plant pathogens. App Env Microbiol 61:1720-1726.

    CAS  Google Scholar 

  • Corbineau F, Rudnicki RM, Come D (1988) The effects of methyl jasmonate on sunflower (Helianthus annuus L.) seed germination and seedling development. Plant Growth Regul 7:157-169.

    CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonate in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355-381.

    PubMed  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938-4941.

    PubMed  CAS  Google Scholar 

  • Currier WW, Strobel GA (1976) Chemotaxis of Rhizobium species to plant root exudates. Plant Physiol 57:802-823.

    Google Scholar 

  • D’Haeze W, Holsters M (2002) Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 12:79R-105R.

    PubMed  Google Scholar 

  • Dakora FD (2000) Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust J Plant Physiol 27:885-892.

    CAS  Google Scholar 

  • Dakora FD, Muofhe ML (1996) Molecular signals involved in nodulation of the African Bambara groundnut (Vigna subterranea L.). In: Proceedings of the International Bambara groundnut Symposium, University of Nottingham, UK, July 23-25, pp 171-179.

    Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993a) Alfalfa (Medicago sativa L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti . Plant Physiol 101:819-824

    PubMed  CAS  Google Scholar 

  • Dakora FD, Joseph CM, Phillips DA (1993b) Common bean root exudates contain elevated levels of daidzein and coumestrol in response to Rhizobium inoculation. Mol Plant Microbe Interact 6:665-668.

    CAS  Google Scholar 

  • de Boer V, van Veen JA (2001) Are chitinolytic rhizosphere bacteria really beneficial to plants? In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant-pathogen associations. CABI Publishing, New York, USA.

    Google Scholar 

  • De Jong AJ, Heidstra K, Spaink HP, Hartog MV, Meijer EA, Hendriks T, Lo Schiavo F, Terzi M, Bisseling T, Van Kammen A, De Vries SC (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5:615-620.

    PubMed  Google Scholar 

  • De Meyer G, Hofte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeru-ginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588-593.

    PubMed  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux J-P, Hofte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in Bean. Mol Plant-Microbe Interact 12:450-458.

    PubMed  Google Scholar 

  • de Souza JT, de Boer M, de Waard P, van Beek TA, Raaijmakers JM (2003) Biochemical, genetic, and zoo sporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161-7172.

    PubMed  Google Scholar 

  • Debeaujon FL, Leon-Kloosterziel IKM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403-413.

    PubMed  CAS  Google Scholar 

  • Debelle F, Plazanet C, Roche P, Pujol C, Savagnac A, Rosenberg C, Prome J-C, Denarie J (1996) The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol 22:303-314.

    PubMed  CAS  Google Scholar 

  • Defago G (1993) 2,4-Diacetylphloroglucinol, a promising compound in biocontrol. Plant Pathol 42:311-312.

    CAS  Google Scholar 

  • Delves-Broughton J (1990) Nisin and its application as a food preservative. J Soc Dairy Tech 43:73-76.

    CAS  Google Scholar 

  • Denarie J, Cullimore JV (1993) Lipo-oligosaccharide nodulation factors: a new class of signalling molecules mediating recognition and morphogenesis. Cell 74:951-954.

    PubMed  CAS  Google Scholar 

  • Denarie J, Debelle F, Prome JC (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Ann Rev Biochem 65:503-535.

    PubMed  CAS  Google Scholar 

  • Dong X (1998) SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol 1:316-323.

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (1997) Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathology 87:1250-1257.

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (1999) Environmental factors modulating antibiotic and siderophore biosyn-thesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429-2438.

    PubMed  CAS  Google Scholar 

  • Duffy BK, Defago G (2000) Controlling instability in gacS-gacA regulatory genes during inocu-lum production of Pseudomonas fluorescens bicontrol strains. Appl Environ Microbiol 66:3142-3150.

    PubMed  CAS  Google Scholar 

  • Dunne C, Crowley JJ, Moenne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracel-lular proteolytic activity. Microbiology 143:3921-3931.

    CAS  Google Scholar 

  • Dyachok JV, Tobin AE, Price NPJ, Von Arnold S (2000) Rhizobial Nod factors stimulate somatic embryo development in Picea abies. Plant Cell Rep 19:290-297.

    CAS  Google Scholar 

  • Dyachok JV, Wiweger M, Kenne L, Von Arnold S (2002) Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway Spruce. Plant Physiol 128:523-533.

    PubMed  CAS  Google Scholar 

  • El-Tarabily KA, Sykes ML, Kurtbke ID, Hardy GEStJ, Barbosa AM, Dekker RFH (1996) Synergistic effects of a cellulase-producing Micromonospora carbonacea and an antibiotic-producing Streptomyces violascens on the suppression of Phytophthora cinnamomi root rot of Banksia grandis. Can J Bot 74:618-624.

    Google Scholar 

  • Enyedi AJ, Yalpani N, Silverman P, Raskin I (1992) Localization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89:2480-2484.

    PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces syn-thesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713-7716.

    PubMed  CAS  Google Scholar 

  • Felton GW, Korth KL, Bi JL, Wesley SV, Huhman DV, Mathews MC, Murphy JB, Lamb C, Dixon RA (1999) Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr Biol 9:317-320.

    PubMed  CAS  Google Scholar 

  • Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation genes in Rhizobium reversed by other compounds present in plants. Nature 324:90-92.

    CAS  Google Scholar 

  • Frankenberger WT Jr, Arshad M (1995) Phytohormones in soils. Marcel Dekker, New York.

    Google Scholar 

  • Fravel DR, Rhodes DJ, Larkin RP (1999) Production and commercialization of biocontrol products. In: Albajes R, Gullino ML, van Lenteren JC, Elad Y (eds) Integrated pest and disease management in greenhouse crops. Kluwer Academia Publishers, Dordrecht, pp 365-376.

    Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211-1221.

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754-756.

    PubMed  CAS  Google Scholar 

  • Gagnon H, Ibrahim RK (1998) Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini, and Sinorhizobium meliloti. Mol Plant-Microbe Interact 11:988-998.

    CAS  Google Scholar 

  • Gaworzewska ET, Carlile MJ (1982) Positive chemotaxis of Rhizobiuim leguminosarum and other bacteria towards exudates from legumes and other plants. J Gen Microbiol 128:1179-1188.

    CAS  Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene. App Environ Microbiol 60:2931-2938.

    CAS  Google Scholar 

  • Geremia RA, Mergaert P, Geelen D, Van Montagu M, Holsters M (1994) The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase Proc Natl Acad Sci USA 91:2669-2673.

    CAS  Google Scholar 

  • Gitte RR, Vittal Rai P, Patil RB (1978) Chemotaxis of Rhizobium species towards root exudates of Cicer arietinium. Plant Soil 50:553-566.

    CAS  Google Scholar 

  • Goedhart J, Bono JJ, Bisseling T, Gadella TW Jr (2003) Identical accumulation and immobiliza-tion of sulfated and non-sulfated Nod factors in host and non-host root hair cell walls. Mol Plant-Microbe Interact 16:884-892.

    PubMed  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395-412

    CAS  Google Scholar 

  • Gray EJ, Lee KD, Souleimanov A, Di Falco MR, Zhou X, Ly A, Charles TC, Smith DL (2006a) A novel bacteriocin, thurici 17, produced by PGPR strain Bacillus thuringiensis NEB17: isola-tion and classification. J Appl Microbiol 100:545-554.

    PubMed  CAS  Google Scholar 

  • Gray EJ, Di Falco M, Souleimanov A, Smith DL (2006b) Proteomic analysis of the bacteriocin thuricin 17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol Lett 255:27-32.

    PubMed  CAS  Google Scholar 

  • Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815-820.

    PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389-2393.

    PubMed  CAS  Google Scholar 

  • Guo Y, George E, Marschner H (1996) Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil 184:195-205.

    CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomon-ads. Nat Rev Microbiol 3:307-319.

    PubMed  CAS  Google Scholar 

  • Hamel C, Barrantes-Cartin U, Furlan V, Smith DL (1991a) Endo-mycorrhizal fungi in nitrogen transfer from soybean to maize. Plant Soil 138:33-40.

    CAS  Google Scholar 

  • Hamel C, Nesser C, Barrantes-Cartin U, Smith DL (1991b) Endo-mycorrhizal fungal species mediate 15N transfer from soybean to maize in non fumigated soil. Plant Soil 138:41-47.

    CAS  Google Scholar 

  • Hanin M, Jabbouri S, Broughton WJ, Fellay R, Quesada-Vincens D (1999) Molecular aspects of host-specific nodulation. In: Stacey G, Keen NT (eds) Plant microbe interactions, vol 4. APS Press, St Paul, Minnesota.

    Google Scholar 

  • Hansen JN (1994) Nisin as a model food preservative. Crit Rev Food Sci Nutr 4:69-93.

    Google Scholar 

  • Hartwig UA, Maxwell CA, Joseph CM, Phillips DA (1990) Chrysoeriol and luteolin released from alfalfa seeds induce nod genes in Rhizobium meliloti. Plant Physiol 92:116-122.

    PubMed  CAS  Google Scholar 

  • Hashidoko Y, Nakayama T, Homma Y, Tahara S (1999) Structure elucidation of xanthobaccin A, a new antibiotic produced from Stenotrophomonas sp. strain SB-K88. Tetrahedron Lett 40:2957-2960.

    CAS  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? Plant Physiol 127:1484-1492.

    PubMed  CAS  Google Scholar 

  • Holland MA (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Ann Rev Plant Physiol Plant Mol Biol 45:197-209.

    CAS  Google Scholar 

  • Hungria M, Stacey G (1997) Molecular signal exchanges between host plants and rhizobia: basic aspects and potential application in agriculture. Soil Biol Biochem 29:819-830

    CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991a). Anthocyanidins and flavonols, major nod gene inducers from seeds of a black-seeded common bean (Phaseolus vulgaris L.). Plant Physiol 97:751-758.

    PubMed  CAS  Google Scholar 

  • Hungria M, Joseph CM, Phillips DA (1991b) Rhizobium nod gene inducers exuded naturally from roots of common bean (Phaseolus vulgaris L.). Plant Physiol 97:759-764.

    PubMed  CAS  Google Scholar 

  • Jack WE, Tagg JR, Ray B (1995) Bacteriocins of Gram-positive bacteria. Microbiol Rev 59:171-200.

    PubMed  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytol 124:61-68.

    CAS  Google Scholar 

  • John M, Rohrig H, Schmidt J, Wieneke U, Schell J (1993) Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci USA 90:625-629.

    PubMed  CAS  Google Scholar 

  • Jones GP, Naidu BP, Starr RK, Paleg LG (1986) Estimates of solutes accumulating in plants by 1H nuclear magnetic resonance spectroscopy. Aust J Plant Physiol 13:649-658.

    CAS  Google Scholar 

  • Jung WJ, An KN, Jin YL, Park RD, Lim KT, Kim KY, Kim TH (2003) Biological control of damping-off caused by Rhizoctonia solani using chitinase producing Paenibacillus illinoisensis KJA-424. Soil Biol Biochem 35:1261-1264.

    CAS  Google Scholar 

  • Jung WJ, Jin YL, Kim KY, Park RD, Kim TH (2005) Changes in pathogenesis-related proteins in pepper plants with regard to biological control of phytopthora blight with Paenibacillus illinoisensis. Biocontrol 50:165-178.

    CAS  Google Scholar 

  • Jung WJ, Mabood F, Souleimanov A, Park RD, Smith DL (2006) Chitinases produced by Paenibacillus illinoisensis and Bacillus thuringiensis subsp. pakistani degrade Nod factor from Bradyrhizobium japonicum. Microbiol Res (in press) doi:10.1016/j.micres.2006.06.013.

    Google Scholar 

  • Jung WJ, Mabood F, Souleimanov A, Zhou X, Jaoua S, Kamoun F, Smith DL (2008) Stability and antibacterial activity of bacteriocins produced by Bacillus thuringiensis and Bacillus thuringiensis ssp. Kurstaki. J Microbiol Biotechnol (In Press).

    Google Scholar 

  • Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S (2005) Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J Appl Microbiol 98:881-888.

    PubMed  CAS  Google Scholar 

  • Kamst E, Pilling J, Raamsdonk LM, Lugtenberg BJJ, Spaink HP (1997) Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol 179:2103-2108.

    PubMed  CAS  Google Scholar 

  • Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW, Lugtenberg BJJ, Spaink HP (1999) Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry 38:4045-4052.

    PubMed  CAS  Google Scholar 

  • Kape R, Parniske M, Brandt S, Werner D (1992) Isoliquiritigenin, a strong nod gene- and glyc-eollin resistance-inducing flavonoid from soybean root exudate. App Env Microbiol 58:1705-1710.

    CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA0 under gnoto-biotic conditions. Phytopathology 79:584-589.

    Google Scholar 

  • Kim BS, Moon SS, Hwang BK (1999) Isolation, identification and antifungal activity of a mac-rolide antibiotic, oligomycin A, produced by Streptomyces libani. Can J Bot 77:850-858.

    CAS  Google Scholar 

  • Kim KY, Jordan D, McDonald GA (1998) Effect of phosphatesolubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soil 26:79-87.

    CAS  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, vol 2, Station de Pathologie Vegetale et Phytobacteriologie INRA Angers France, pp 879-882.

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Zehnder GW, Murphy J, Sikora E, Fernandez C (1999) Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust J Plant Pathol 28:27-33.

    Google Scholar 

  • Kosslak RM, Bookland R, Berkei J, Paaren HE, Appelbaum ER (1987) Induction of Bradyrhizobium japonicum common nod genes by isoflavones isolated from Glycine max. Proc Natl Acad Sci USA 84:7428-7432.

    PubMed  CAS  Google Scholar 

  • Kramell R, Altzorn R, Schneider G, Miersch O, Bruckner C, Schmidt J, Sembdner G, Parthier B (1995) Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J Plant Growth Regul 14:29-36.

    CAS  Google Scholar 

  • Kucey RMN (1988) Plant growth-altering effects of Azospirillum brasilense and Bacillus C-11-25 on two wheat cultivars. J App Bacteriol 64:187-196.

    CAS  Google Scholar 

  • Lebuhn M, Heulin T, Hartmann A (1997) Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol Ecol 22:325-334.

    CAS  Google Scholar 

  • Leeman M, den Ouden FM, van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155.

    CAS  Google Scholar 

  • Leibovitch S, Migner P, Zhang F, Smith DL (2001) Evaluation of the effect of SoyaSignal technol-ogy on soybean yield [Glycine max (L.) Merr.] under field conditions over 6 years in eastern Canada and the northern United States. J Agron Crop Sci 187:281-292.

    CAS  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Trucet G, Prome J-C, Denarie J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide. Nature 344:781-784.

    PubMed  CAS  Google Scholar 

  • Li X-L, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49-57.

    CAS  Google Scholar 

  • Lopez-Lara IM, Bloktip L, Quinto C, Garcia ML, Stacey G, Bloemberg GV, Lamers GEM, Lugtenberg BJJ, Thomasoates JE, Spaink HP (1996) NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol 21:397-408.

    PubMed  CAS  Google Scholar 

  • Lynch JM, Whipps JM (1991) Substrate flow in the rhizosphere. In: Keister DL, Cregan B (eds) The rhizosphere and plant growth. Beltsville Symposium in Agricultural Research 14. Kluwer, Dordrecht The Netherlands, pp 15-24.

    Google Scholar 

  • Mabood F, Smith DL (2005) Pre-incubation of Bradyrhizobium japonicum with jasmonates accel-erate nodulation and nitrogen fixation in soybean (Glycine max) at optimal and sub-optimal root zone temperatures. Physiol Plant 125:311-323.

    CAS  Google Scholar 

  • Mabood F, Gray EJ, Lee KD, Supanjani, Smith DL (2006a) Exploiting inter-organismal chemical communication for improved inoculants. Can J Plant Sci 86:951-966.

    Google Scholar 

  • Mabood F, Souleimanov A, Khan W, Smith DL (2006b) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759-765.

    PubMed  CAS  Google Scholar 

  • Mabood F, Zhou X, Smith DL (2006c) Bradyrhizobium japonicum preincubated with methyl jas-monate increases soybean nodulation and nitrogen fixation. Agron J 98:289-294

    Google Scholar 

  • Mabood F, Zhou X, Lee KD, Smith DL (2006d) Methyl jasmonate, alone or in combination with genistein, and Bradyrhizobium japonicum increases soybean (Glycine max L.) plant dry matter production and grain yield under short season conditions. Field Crops Res 95:412-419.

    Google Scholar 

  • Mathesius U, Bayliss C, Weinman JJ, Schlaman HRM, Spaink HP, Rolfe BG, McCully ME, Djordjevic MA (1998) Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol Plant Microbe Interact 11:1223-1232.

    CAS  Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use. Traversing the world of com-mercializing biocontrol agents for plant disease control. Plant Dis 83:972-983.

    Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Metraux J-P, Defago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139-146.

    CAS  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Defago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678-684.

    PubMed  CAS  Google Scholar 

  • Maxwell CA, Hartwig UA, Joseph CM, Phillips DA (1989) A chalcone and two related flavonoids released from alfalfa roots induce nod genes of Rhizobium meliloti. Plant Physiol 91:842-847.

    PubMed  CAS  Google Scholar 

  • McIver H (2005) The use of legume/rhizobial signals for yield enhancement in non-leguminous crops. Inoculant forum 2005, Saskatoon, Saskatchewan, March 17-18.

    Google Scholar 

  • McSpadden Gardener BB, Fravel DR (2002) Biological control of plant pathogens: research, com-mercialization, and application in the USA. Online. Plant Health Progr doi:10.1094/PHP-2002-0510-01-RV[http://www.apsnet.org/online/feature/biocontrol/top.html].

  • Mergaert P, D’Haeze W, Geelen D, Prome Dvan Montagu M, Geremia P, Prome J-C, Holsters M, (1995) Biosynthesis of Azorhizobium caulinodans Nod factor: study of the activity of the NodABC proteins by expression of the genes in Escherichia coli. J Biol Chem 270:29217-29223.

    PubMed  CAS  Google Scholar 

  • Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J (1995) Culture conditions that influence accu-mulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43:685-691.

    PubMed  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061-3065.

    PubMed  CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334-4339.

    PubMed  CAS  Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Online. Crop Manag doi:10.1094/CM-2004-0301-05-RV[http://www.plantmanagementnetwork. org/pub/cm/review/2004/rhizobacteria/].

  • Nielsen TH, Sorensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861-868.

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christeophersen C, Givskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416-3423.

    PubMed  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500-507.

    CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279-283.

    PubMed  CAS  Google Scholar 

  • Okon Y, Labandera-Gonzales CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591-1601.

    CAS  Google Scholar 

  • Ortas I, Harris PJ, Rowell DL (1996) Enhanced uptake of phosphorus by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant Soil 184:255-264.

    CAS  Google Scholar 

  • Ownley BH, Weller DM, Thomashow LS (1992) Influence of in situ and in vitro pH on suppres-sion of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathology 82:178-184.

    CAS  Google Scholar 

  • Ownley BH, Duffy BK, Weller DM (2003) Identification and manipulation of soil properties to improve the biological control performance of phenazine-producing Pseudomonas fluorescens. Appl Environ Microbiol 69:3333-3343.

    PubMed  CAS  Google Scholar 

  • Parker JE (2003) Plant recognition of microbial patterns. Trends Plant Sci 8:245-247.

    PubMed  CAS  Google Scholar 

  • Parret AHA, Mot RD (2002) Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trend Microbiol 10:107-112.

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207-220.

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC, Belanger RB (2001) Biological control in greenhouse systems. Ann Rev Phytopathol 39:103-133.

    CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180-201.

    PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189-199.

    CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977-980.

    PubMed  CAS  Google Scholar 

  • Phillips DA (2000) Biosynthesis and release of rhizobial nodulation gene inducers by legumes. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Science Press, Wymondham Norfolk England, pp 349-364.

    Google Scholar 

  • Phillips DA, Joseph CM, Maxwell CA (1992) Trigonelline and stachydrine released from alfalfa seeds activate NodD2 protein in Rhizobium meliloti. Plant Physiol 99:1526-1531.

    PubMed  CAS  Google Scholar 

  • Phillips DA, Wery J, Joseph CM, Jones AD, Teubers LR (1995) Release of flavonoids and betaines from seeds of seven Medicago species. Crop Sci 35:805-808.

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948-955.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.

    PubMed  CAS  Google Scholar 

  • Pleban S, Chernin L, Chet I (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett App Microbiol 25:284-288.

    CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761-768.

    CAS  Google Scholar 

  • Prithiviraj B, Zhou X, Souleimanov A, Khan WM, Smith DL (2003) A host-specific bacteria-to-plant signal molecule (Nod factor) enhances germination and early growth of diverse crop plants. Planta 21:437-445.

    Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Leeuwenhoek 81:537-547.

    PubMed  CAS  Google Scholar 

  • Recourt K, Schripsema J, Kijn JW, van Brussel AAN, Lugtenberg BJJ (1991) Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol Biol 16:841-852.

    PubMed  CAS  Google Scholar 

  • Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632-635.

    CAS  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth pro-motion. Biotechnol Adv 17:319-339.

    PubMed  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Wieneke U, Kondorosi E, Barlier I, Schell J, John M (1994) Biosynthesis of lipooligosaccharide nodulation factors-Rhizobium NodA protein is involved in N-acylation of the chitooligosaccharide backbone. Proc Natl Acad Sci USA 91:3122-3126.

    PubMed  CAS  Google Scholar 

  • Rosas S, Soria R, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161-1168.

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809-1819.

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927-4932.

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026.

    PubMed  CAS  Google Scholar 

  • Rzewnicki P (2000) Ohio organic producers: final survey results. Online. Ohio State University, Extension Research Bulletin Special Circular 174[http://ohioline.osu.edu/sc174/index.html].

  • Sandberg G (1984) Biosynthesis and metabolism of indole-3-ethanol and indole-3-acetic acid by Pinus sylvestris L. needles. Planta 161:398-403.

    CAS  Google Scholar 

  • Schmidt CS, Lorenz D, Wolf GA (2001) Biological control of the grapevine dieback fungus Eutypa lata I: screening of bacterial antagonists. J Phytopathol 149:427-435.

    Google Scholar 

  • Selvadurai EL, Brown AE, Hamilton JTG (1991) Production of indole-3-acetic acid analogues by strains of Bacillus cereus in relation to their influence on seedling development. Soil Biol Biochem 23:401-403.

    CAS  Google Scholar 

  • Serdyuk OP, Smolygina LD, Muzafarov EN, Adanin VM, Arinbasarov MU (1995) 4-Hydroxyphenethyl alcohol, a new cytokinin-like substance from the phototrophic purple bacterium Rhodospirillum rubrum 1R. FEBS Lett 365:10-12.

    PubMed  CAS  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833-843

    PubMed  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718-721.

    CAS  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium Wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92-99.

    PubMed  CAS  Google Scholar 

  • Smit G, Puvanesarajah V, Carlson RW, Barbour WM, Stacey G (1992) Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267:310-318.

    PubMed  CAS  Google Scholar 

  • Smith DL, Zhang F (1999) Composition for enhancing grain yield and protein yield of legumes grown under environmental conditions that inhibit or delay nodulation thereof. US Patent 5922316.

    Google Scholar 

  • Smith S (2005) New patented growth promoter technology to enhance early season soybean devel-opment & grain yield. Inoculant Forum 2005, Saskatoon, Saskatchewan, March 17-18.

    Google Scholar 

  • Soulemainov A, Prithiviraj B, Smith DL (2002) The major Nod factor of Bradyrhizobium japoni-cum promotes early growth of soybean and corn. J Exp Bot 53:1929-1934.

    Google Scholar 

  • Spaink HP (2000) Root nodulation and infection factors produced by rhizobial bacteria. Ann Rev Microbiol 54:257-288.

    CAS  Google Scholar 

  • Spaink HP, Wijfjes AHM, van der Drift KMGM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJJ (1994) Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Mol Microbiol 13:821-831.

    PubMed  CAS  Google Scholar 

  • Stacey G, Sanjuan J, Luka S, Dockendorff T, Carlson RW (1995) Signal exchange in the Bradyrhizobium-soybean symbiosis. Soil Biol Biochem 27:473-483.

    CAS  Google Scholar 

  • Stafford H (1990) Flavonoid metabolism. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487-506.

    PubMed  CAS  Google Scholar 

  • Sticher L, Mauch-Mani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235-270.

    PubMed  CAS  Google Scholar 

  • Strzelczyk E, Pokojska-Burdziej A (1984) Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus silvestris L.). Plant Soil 81:185-194.

    CAS  Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1995) Arbuscular mycorrhizae and water relations in maize under drought stress at tasseling. New Phytol 129:643-650.

    Google Scholar 

  • Valois D, Fayad K, Barbasubiye T, Garon M, Dery C, Brzezinski R, Beaulieu C (1996) Glucanolytic actinomycetes antagonistic to Phytophthora fragariae var. rubi, the causal agent of raspberry root rot. App Env Microbiol 62:1630-1635.

    CAS  Google Scholar 

  • van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753-765.

    Google Scholar 

  • van Loon LC, Bakker PAHM, Pierterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol 36:453-483.

    PubMed  Google Scholar 

  • Vessey JK(2003) Plant gowth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586.

    CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458-461.

    PubMed  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux J-P, Ryals JA (1991) Coordinate gene activity in response to agents that induce sys-temic acquired resistance. Plant Cell 3:1085-1094.

    PubMed  CAS  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth promoting rhizobacteria. Phytopathology 81:1508-1512.

    Google Scholar 

  • Weingart H, Volksch B (1997) Ethylene production by Pseudomonas syringae pathovars in vitro and in planta. App Env Microbiol 63:156-161.

    CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487-511.

    PubMed  CAS  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67-71.

    CAS  Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, De Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845-870.

    CAS  Google Scholar 

  • Yu O, Jung W, Shi J, Croes RA, Fader GM, McGonigle B, Odell JT (2000) Production of the iso-flavones genistein and daidzein in non-legume dicot and monocot tissues. Plant Physiol 124:781-794.

    PubMed  CAS  Google Scholar 

  • Zaat SAJ, Schripsema J, Wijffelman CA, van Brussel AAN, Lugtenberg BJJ (1989) Analysis of the major inducers of the Rhizobium nodA promoter from Vicia sativa root exudate and their activity with different nodD genes. Plant Mol Biol 13:175-188.

    PubMed  CAS  Google Scholar 

  • Zhang F, Smith DL (1994) Effects of low root zone temperatures on the early stages of symbiosis establishment between soybean [Glycine max (L.) Merr.] and Bradyrhizobium japonicum. J Exp Bot 279:1467-1473.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald L. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mabood, F., Jung, W.J., Smith, D.L. (2008). Signals in the Underground: Microbial Signaling and Plant Productivity. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_12

Download citation

Publish with us

Policies and ethics