Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Multicellular organisms rely on an accurate communication between individual cells to coordinate many aspects of physiology and development. Prokaryotic organisms, although unicellular, also express certain traits only when a critical number of bacteria has been reached. Here, the individual bacterium benefits from joint multicellular behaviour to survive, compete and persist in nature, or to colonize a particular host. Therefore, they have to communicate with each other. Fuqua et al. (1994) introduced the term “quorum sensing (QS)” to describe the process where bacterial communication is used to monitor population density and to change bacterial gene expression and behaviour accordingly (Fuqua et al. 2001; von Bodman et al. 2003a). Essentially, QS is based on production of low-mass signalling molecules, the extracellular concentration of which is related to the population density of the producing organisms. These signalling molecules can be sensed by the bacterial cells and this allows the population to initiate a concerted action once a critical concentration (“quorum”) has been reached (Whitehead et al. 2001). A wide range of (potential) low-mass signalling molecules have been identified. These include peptide-based signals in various Gram-positive organisms and the N-acyl homoserine lactone (AHL) signals found in many Gram-negative bacteria (Proteobacteria) (Fuqua et al. 2001; Whitehead et al. 2001) as well as many other signal molecules (for an overview see Visick and Fuqua 2005). However, Redfield (2002) suggested that in some cases quorum sensing might be a side effect of cells monitoring their diffusion environment instead of communicating. By this means, cells can regulate the secretion of effectors to minimize losses to extracellular diffusion. Most QS-regulated processes in plant-associated bacteria are mediated by AHL (N-acyl homoserine lactone (HSL))-based QS systems, which is the main focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aendekerk S, Diggle SP, Song Z, Hoiby N, Cornelis P, Williams P, Camara M (2005) The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and viru-lence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology 151:1113-1125.

    PubMed  CAS  Google Scholar 

  • Ahmer BM, van Reeuwijk J, Timmers CD, Valentine PJ, Heffron F (1998) Salmonella typhimu-rium encodes an SdiA homolog, a putative quorum sensor of the LuxR family, that regulates genes on the virulence plasmid. J Bacteriol 180:1185-1193.

    PubMed  CAS  Google Scholar 

  • Andersson RA, Eriksson AR, Heikinheimo R, Mae A, Pirhonen M, Koiv V, Hyytiainen H, Tuikkala A, Palva ET (2000) Quorum sensing in the plant pathogen Erwinia carotovora subsp. carotovora: the role of expR(Ecc). Mol Plant Microbe Interact 13:384-393.

    PubMed  CAS  Google Scholar 

  • Arevalo-Ferro C, Reil G, Gorg A, Eberl L, Riedel K (2005) Biofilm formation of Pseudomonas putida IsoF: the role of quorum sensing as assessed by proteomics. Syst Appl Microbiol 28:87-114.

    PubMed  CAS  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429-433.

    PubMed  CAS  Google Scholar 

  • Beck von Bodman S, Farrand SK (1995) Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. J Bacteriol 177:5000-5008.

    PubMed  CAS  Google Scholar 

  • Bejerani-Sagie M, Xavier KB (2007) The role of small RNAs in quorum sensing. Curr Opin Microbiol 10:189-198.

    Google Scholar 

  • Bertani I, Venturi V (2004) Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70:5493-5502.

    PubMed  CAS  Google Scholar 

  • Burr T, Barnard AM, Corbett MJ, Pemberton CL, Simpson NJ, Salmond GP (2006) Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor. Mol Microbiol 59:113-125.

    PubMed  CAS  Google Scholar 

  • Cantero L, Palacios JM, Ruiz-Argueso T, Imperial J (2006) Proteomic analysis of quorum sensing in Rhizobium leguminosarum biovar viciae UPM791. Proteomics 6:S97-S106 Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119-1129.

    Google Scholar 

  • Chai Y, Zhu J, Winans SC (2001) TrlR, a defective TraR-like protein of Agrobacterium tumefa-ciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers. Mol Microbiol 40:414-421.

    PubMed  CAS  Google Scholar 

  • Chancey ST, Wood DW, Pierson LS III (1999) Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol 65:2294-2299.

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Cui Y, Hasegawa H, Leigh N, Dixit V, Chatterjee AK (2005) Comparative analysis of two classes of quorum-sensing signaling systems that control production of extracellular proteins and secondary metabolites in Erwinia carotovora subspecies. J Bacteriol 187:8026-8038.

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Cui Y, Hasegawa H, Chatterjee AK (2007) PsrA, the Pseudomonas sigma regulator, controls regulators of epiphytic fitness, quorum-sensing signals, and plant interactions in Pseudomonas syringae pv. tomato strain DC3000. Appl Environ Microbiol 73:3684-3694.

    PubMed  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci (USA) 103:7460-7464.

    CAS  Google Scholar 

  • Chin-A-Woeng TF, van den Broek D, de Voer G, van der Drift KM, Tuinman S, Thomas-Oates JE, Lugtenberg BJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the bio-control strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14:969-979.

    PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TF, van den Broek D, Lugtenberg BJ, Bloemberg GV (2005) The Pseudomonas chlororaphis PCL1391 sigma regulator psrA represses the production of the antifungal metab-olite phenazine-1-carboxamide. Mol Plant Microbe Interact 18:244-253.

    PubMed  CAS  Google Scholar 

  • Costa JM, Loper JE (1997) EcbI and EcbR: homologs of LuxI and LuxR affecting antibiotic and exoenzyme production by Erwinia carotovora subsp. betavasculorum. Can J Microbiol 43:1164-1171.

    Article  PubMed  CAS  Google Scholar 

  • Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026-4035.

    PubMed  CAS  Google Scholar 

  • Cui Y, Chatterjee A, Hasegawa H, Dixit V, Leigh N, Chatterjee AK (2005) ExpR, a LuxR homolog of Erwinia carotovora subsp. carotovora, activates transcription of rsmA, which specifies a global regulatory RNA-binding protein. J Bacteriol 187:4792-4803.

    PubMed  CAS  Google Scholar 

  • Cullinane M, Baysse C, Morrissey JP, O’Gara F (2005) Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens. Microbiology 151:3071-3080.

    PubMed  CAS  Google Scholar 

  • d’Angelo-Picard C, Faure D, Penot I, Dessaux Y (2005) Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. Environ Microbiol 7:1796-1808.

    PubMed  Google Scholar 

  • Daniels R, De Vos DE, Desair J, Raedschelders G, Luyten E, Rosemeyer V, Verreth C, Schoeters E, Vanderleyden J, Michiels J (2002) The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation. J Biol Chem 277:462-468.

    PubMed  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261-289.

    PubMed  CAS  Google Scholar 

  • Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE, Vanderleyden J, Vermant J, Michiels J (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci (USA) 103:14965-14970.

    CAS  Google Scholar 

  • Danino VE, Wilkinson A, Edwards A, Downie JA (2003) Recipient-induced transfer of the sym-biotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay. Mol Microbiol 50:511-525.

    PubMed  CAS  Google Scholar 

  • Degrassi G, Aguilar C, Bosco M, Zahariev S, Pongor S, Venturi V (2002) Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: cross-talk with quorum sensing bacterial sensors. Curr Microbiol 45:250-254.

    PubMed  CAS  Google Scholar 

  • Dibb NJ, Downie JA, Brewin NJ (1984) Identification of a rhizosphere protein encoded by the symbiotic plasmid of Rhizobium leguminosarum. J Bacteriol 158:621-627.

    PubMed  CAS  Google Scholar 

  • Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754-1759.

    PubMed  CAS  Google Scholar 

  • Dubern JF, Lugtenberg BJ, Bloemberg GV (2006) The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188:2898-2906.

    PubMed  CAS  Google Scholar 

  • Economou A, Hawkins FKL, Downie JA, Johnson AWB (1989) Transcription of rhiA, a gene on a Rhizobium leguminosarum bv. viciae Sym plasmid, requires rhiR and is expressed by flavo-noids that induce nod genes. Mol Microbiol 3:87-93.

    PubMed  CAS  Google Scholar 

  • El-Sayed AK, Hothersall J, Thomas CM (2001) Quorum-sensing-dependent regulation of biosyn-thesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology 147:2127-2139.

    PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC (1994) A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J Bacteriol 176:2796-2806.

    PubMed  CAS  Google Scholar 

  • Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269-275.

    PubMed  CAS  Google Scholar 

  • Fuqua C, Burbea M, Winans SC (1995) Activity of the Agrobacterium Ti plasmid conjugal trans-fer regulator TraR is inhibited by the product of the traM gene. J Bacteriol 177:1367-1373.

    PubMed  CAS  Google Scholar 

  • Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell com-munication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439-468.

    PubMed  CAS  Google Scholar 

  • Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant Microbe Interact 16:827-834.

    PubMed  CAS  Google Scholar 

  • Gao M, Chen H, Eberhard A, Gronquist MR, Robinson JB, Rolfe BG, Bauer WD (2005) sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:7931-7944.

    PubMed  CAS  Google Scholar 

  • Girard G, van Rij ET, Lugtenberg BJ, Bloemberg GV (2006) Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. Microbiology 152:43-58.

    PubMed  CAS  Google Scholar 

  • Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling. J Bacteriol 178:6618-6622.

    PubMed  CAS  Google Scholar 

  • Gonzalez V, Santamaria RI, Bustos P, Hernandez-Gonzalez I, Medrano-Soto A, Moreno-Hagelsieb G, Janga SC, Ramirez MA, Jimenez-Jacinto V, Collado-Vides J, Davila G (2006) The parti-tioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting repli-cons. Proc Natl Acad Sci (USA) 103:3834-3839.

    Google Scholar 

  • Gould TA, Schweizer HP, Churchill ME (2004) Structure of the Pseudomonas aeruginosa acyl-homoserine lactone synthase LasI. Mol Microbiol 53:1135-1146.

    PubMed  CAS  Google Scholar 

  • Gray KM, Pearson JP, Downie JA, Boboye BE, Greenberg EP (1996) Cell-to-cell signaling in the symbiotic nitrogen-fixing bacterium Rhizobium leguminosarum: autoinduction of a stationary phase and rhizosphere-expressed genes. J Bacteriol 178:372-376.

    PubMed  CAS  Google Scholar 

  • Hanzelka BL, Parsek MR, Val DL, Dunlap PV, Cronan JE Jr, Greenberg EP (1999) Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181:5766-5770.

    PubMed  CAS  Google Scholar 

  • Hao G, Burr TJ (2006) Regulation of long-chain N-acyl-homoserine lactones in Agrobacterium vitis. J Bacteriol 188:2173-2183.

    PubMed  CAS  Google Scholar 

  • Hao G, Zhang H, Zheng D, Burr TJ (2005) luxR homolog avhR in Agrobacterium vitis affects the development of a grape-specific necrosis and a tobacco hypersensitive response. J Bacteriol 187:185-192.

    PubMed  CAS  Google Scholar 

  • He X, Chang W, Pierce DL, Seib LO, Wagner J, Fuqua C (2003) Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate. J Bacteriol 185:809-822.

    PubMed  CAS  Google Scholar 

  • Hirsch PR (1979) Plasmid-determined bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113:219-228.

    CAS  Google Scholar 

  • Hoang HH, Becker A, Gonzalez JE (2004) The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression. J Bacteriol 186:5460-5472.

    PubMed  CAS  Google Scholar 

  • Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labatte M, England D, Rice S, Givskov M, Salmond GP, Stewart GS, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Mol Microbiol 33:1254-1266.

    PubMed  CAS  Google Scholar 

  • Huang JJ, Han JI, Zhang LH, Leadbetter JR (2003) Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941-5949.

    PubMed  CAS  Google Scholar 

  • Huang JJ, Petersen A, Whiteley M, Leadbetter JR (2006) Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 72:1190-1197.

    PubMed  CAS  Google Scholar 

  • Hwang I, Li PL, Zhang L, Piper KR, Cook DM, Tate ME, Farrand SK (1994) TraI, a LuxI homo-logue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proc Natl Acad Sci (USA) 91:4639-4643.

    CAS  Google Scholar 

  • Hwang I, Smyth AJ, Luo ZQ, Farrand SK (1999) Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Mol Microbiol 34:282-294.

    PubMed  CAS  Google Scholar 

  • Kaplan HB, Greenberg EP (1985) Diffusion of autoinducer is involved in regulation of the Vibrio fisheri luminescence system. J Bacteriol 163:1210-1214.

    PubMed  CAS  Google Scholar 

  • Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci (USA) 102:309-314.

    CAS  Google Scholar 

  • Kay E, Dubuis C, Haas D (2005) Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0. Proc Natl Acad Sci (USA) 102:17136-17141.

    CAS  Google Scholar 

  • Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) l-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427-8436.

    PubMed  CAS  Google Scholar 

  • Khan SR, Mavrodi DV, Jog GJ, Suga H, Thomashow LS, Farrand SK (2005) Activation of the phz operon of Pseudomonas fluorescens 2-79 requires the LuxR homolog PhzR, N-(3-OH-Hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187:6517-6527.

    PubMed  CAS  Google Scholar 

  • Kim MH, Choi WC, Kang HO, Lee JS, Kang BS, Kim KJ, Derewenda ZS, Oh TK, Lee CH, Lee JK. (2005) The molecular structure and catalytic mechanism of a quorum-quenching N-acyl-l-homoserine lactone hydrolase. Proc Natl Acad Sci (USA) 102:17606-17611.

    CAS  Google Scholar 

  • Koutsoudis MD, Tsaltas D, Minogue TD, von Bodman SB (2006) Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proc Natl Acad Sci (USA) 103:5983-5988.

    CAS  Google Scholar 

  • Laue BE, Jiang Y, Chhabra SR, Jacob S, Stewart GS, Hardman A, Downie JA, O’Gara F, Williams P (2000) The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N-(3-hydroxy-7-cis-tetradecenoyl) homoserine lactone, via HdtS, a putative novel N-acylhomoserine lactone synthase. Microbiology 146:2469-2480.

    PubMed  CAS  Google Scholar 

  • Leadbetter JR, Greenberg EP (2000) Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921-6926.

    PubMed  CAS  Google Scholar 

  • Licciardello G, Bertani I, Steindler L, Bella P, Venturi V, Catara V (2007) Pseudomonas corrugata contains a conserved N-acyl homoserine lactone quorum sensing system; its role in tomato path-ogenicity and tobacco hypersensitivity response. FEMS Microbiol Ecol [Epub ahead of print].

    Google Scholar 

  • Lin YH, Xu JL, Hu J, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lac-tone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849-860.

    PubMed  Google Scholar 

  • Lithgow JK, Wilkinson A, Hardman A, Rodelas B, Wisniewski-Dye F, Williams P, Downie JA (2000) The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci. Mol Microbiol 37:81-97.

    PubMed  CAS  Google Scholar 

  • Lithgow JK, Danino VE, Jones J, Downie JA (2001) Analysis of N-acyl homoserine-lactone quo-rum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids. Plant Soil 232:3-12.

    CAS  Google Scholar 

  • Liu D, Lepore BW, Petsko GA, Thomas PW, Stone EM, Fast W, Ringe D (2005) Three-dimen-sional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis. Proc Natl Acad Sci (USA) 102:11882-11887.

    Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique inte-gration of global regulatory circuits. Appl Environ Microbiol 69:10-17.

    PubMed  CAS  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002a) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci (USA) 99:14446-14451 Loh J, Lohar DP, Andersen B, Stacey G (2002b) A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J Bacteriol 184:1759-1766.

    PubMed  CAS  Google Scholar 

  • Luo ZQ, Smyth AJ, Gao P, Qin Y, Farrand SK (2003) Mutational analysis of TraR. Correlating function with molecular structure of a quorum-sensing transcriptional activator. J Biol Chem 278:13173-13182.

    PubMed  CAS  Google Scholar 

  • Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119-1127.

    PubMed  CAS  Google Scholar 

  • Marketon MM, González JE (2002) Identification of two quorum-sensing systems in Sinorhizobium meliloti. J Bacteriol 184:3466-3475.

    PubMed  CAS  Google Scholar 

  • Marketon MM, Gronquist MR, Eberhard A, González JE (2002) Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lac-tones. J Bacteriol 184:5686-5695.

    PubMed  CAS  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysac-charide production in Sinorhizobium meliloti. J Bacteriol 185:325-333.

    PubMed  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci (USA) 100:1444-1449.

    CAS  Google Scholar 

  • McKenney D, Brown KE, Allison DG (1995) Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communica-tion. J Bacteriol 177:6989-6992.

    PubMed  CAS  Google Scholar 

  • Michael B, Smith JN, Swift S, Heffron F, Ahmer BM (2001) SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol 183:5733-5742.

    PubMed  CAS  Google Scholar 

  • Minogue TD, Wehland-von Trebra M, Bernhard F, von Bodman SB (2002) The autoregulatory role of EsaR, a quorum-sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function. Mol Microbiol 44:1625-1635.

    PubMed  CAS  Google Scholar 

  • Minogue TD, Carlier AL, Koutsoudis MD, von Bodman SB (2005) The cell density-dependent expression of stewartan exopolysaccharide in Pantoea stewartii ssp. stewartii is a function of EsaR-mediated repression of the rcsA gene. Mol Microbiol 56:189-203.

    PubMed  CAS  Google Scholar 

  • Moré MI, Finger LD, Stryker JL, Fuqua C, Eberhard A, Winans SC (1996) Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655-1658.

    PubMed  Google Scholar 

  • Morello JE, Pierson EA, Pierson LS III (2004) Negative cross-communication among wheat rhizosphere bacteria: effect on antibiotic production by the biological control bacterium Pseudomonas aureofaciens 30-84. Appl Environ Microbiol 70:3103-3109.

    PubMed  CAS  Google Scholar 

  • Moris M, Braeken K, Schoeters E, Verreth C, Beullens S, Vanderleyden J, Michiels J (2005) Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp. J Bacteriol 187:5460-5469.

    PubMed  CAS  Google Scholar 

  • Nasser W, Bouillant ML, Salmond G, Reverchon S (1998) Characterization of the Erwinia chry-santhemi expI-expR locus directing the synthesis of two N-acyl-homoserine lactone signal molecules. Mol Microbiol 29:1391-1405.

    PubMed  CAS  Google Scholar 

  • Park SY, Lee SJ, Oh TK, Oh JW, Koo BT, Yum DY, Lee JK (2003) AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541-1550.

    PubMed  CAS  Google Scholar 

  • Parsek MR, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1999) Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci (USA) 96:4360-4365.

    CAS  Google Scholar 

  • Pearson JP, Van Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in trans-port of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203-1210.

    PubMed  CAS  Google Scholar 

  • Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184:5067-5076.

    PubMed  CAS  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM (1998) Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078-1084.

    CAS  Google Scholar 

  • Piper KR, von Bodman SB, Farrand SK (1993) Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448-450.

    PubMed  CAS  Google Scholar 

  • Qin Y, Luo ZQ, Smyth AJ, Gao P, Beck von Bodman S, Farrand SK (2000) Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. EMBO J 19:5212-5221.

    PubMed  CAS  Google Scholar 

  • Quinones B, Pujol CJ, Lindow SE (2004) Regulation of AHL production and its contribution to epiphytic fitness in Pseudomonas syringae. Mol Plant Microbe Interact 17:521-531.

    PubMed  CAS  Google Scholar 

  • Quinones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant Microbe Interact 18:682-693.

    PubMed  CAS  Google Scholar 

  • Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365-370.

    PubMed  CAS  Google Scholar 

  • Rodelas B, Lithgow JK, Wisniewski-Dye F, Hardman A, Wilkinson A, Economou A,Williams P, Downie JA (1999) Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816-3823.

    PubMed  CAS  Google Scholar 

  • Rosemeyer V, Michiels J, Verreth C, Vanderleyden J (1998) luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J Bacteriol 180:815-821.

    PubMed  CAS  Google Scholar 

  • Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci (USA) 93:9505-9509.

    CAS  Google Scholar 

  • Schripsema J, de Rudder KE, van Vliet TB, Lankhorst PP, de Vroom E, Kijne JW, van Brussel AA (1996) Bacteriocin small of Rhizobium leguminosarum belongs to the class of N-acyl-l-homo-serine lactone molecules, known as autoinducers and as quorum sensing co-transcription fac-tors. J Bacteriol 178:366-371.

    PubMed  CAS  Google Scholar 

  • Shiner EK, Rumbaugh KP, Williams SC (2005) Inter-kingdom signaling: deciphering the lan-guage of acyl homoserine lactones. FEMS Microbiol Rev 29:935-947.

    PubMed  CAS  Google Scholar 

  • Sjöblom S, Brader G, Koch G, Palva ET (2006) Cooperation of two distinct ExpR regulators con-trols quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol Microbiol 60:1474-1489.

    PubMed  Google Scholar 

  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761-5770.

    PubMed  CAS  Google Scholar 

  • Steidle A, Allesen-Holm M, Riedel K, Berg G, Givskov M, Molin S, Eberl L (2002) Identification and characterization of an N-acylhomoserine lactone-dependent quorum-sensing system in Pseudomonas putida strain IsoF. Appl Environ Microbiol 68:6371-6382.

    PubMed  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637-648.

    PubMed  CAS  Google Scholar 

  • Teplitski M, Chen H, Rajamani S, Gao M, Merighi M, Sayre RT, Robinson JB, Rolfe BG, Bauer WD (2004) Chlamydomonas reinhardtii secretes compounds that mimic bacterial signals and interfere with quorum sensing regulation in bacteria. Plant Physiol 134:137-146.

    PubMed  CAS  Google Scholar 

  • Thorne SH, Williams HD (1999) Cell density-dependent starvation survival of Rhizobium legumi-nosarum bv. phaseoli: identification of the role of an N-acyl homoserine lactone in adaptation to stationary-phase survival. J Bacteriol. 181:981-990.

    PubMed  CAS  Google Scholar 

  • Tun-Garrido C, Bustos P, Gonzalez V, Brom S (2003) Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regu-lated by quorum sensing. J Bacteriol 185:1681-1692.

    PubMed  CAS  Google Scholar 

  • Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD (2002) The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 21:4393-4401.

    PubMed  CAS  Google Scholar 

  • Vannini A, Volpari C, Di Marco S (2004) Crystal structure of the quorum-sensing protein TraM and its interaction with the transcriptional regulator TraR. J Biol Chem 279:24291-24296.

    PubMed  CAS  Google Scholar 

  • van Rij ET, Girard G, Lugtenberg BJ, Bloemberg GV (2005) Influence of fusaric acid on phena-zine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805-2814.

    PubMed  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274-291.

    PubMed  CAS  Google Scholar 

  • Visick KL, Fuqua C (2005) Decoding microbial chatter: cell-cell communication in bacteria. J Bacteriol 187:5507-5519.

    PubMed  CAS  Google Scholar 

  • von Bodman SB, Majerczak DR, Coplin DL (1998) A negative regulator mediates quorum-sens-ing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proc Natl Acad Sci (USA) 95:7687-7692.

    Google Scholar 

  • von Bodman SB, Bauer WD, Coplin LD (2003a) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455-482.

    Google Scholar 

  • von Bodman SB, Ball JK, Faini MA, Herrera CM, Minogue TD, Urbanowski ML, Stevens AM (2003b) The quorum sensing negative regulators EsaR and ExpREcc, homologues within the LuxR family, retain the ability to function as activators of transcription. J Bacteriol 185:7001-7007.

    Google Scholar 

  • Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520-525.

    PubMed  CAS  Google Scholar 

  • Wang C, Zhang HB, Wang LH, Zhang LH (2006) Succinic semialdehyde couples stress response to quorum-sensing signal decay in Agrobacterium tumefaciens. Mol Microbiol 62:45-56.

    PubMed  CAS  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319-346.

    PubMed  CAS  Google Scholar 

  • Watson WT, Minogue TD, Val DL, von Bodman SB, Churchill ME (2002) Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685-694.

    PubMed  CAS  Google Scholar 

  • Wei HL, Zhang LQ (2006) Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie Van Leeuwenhoek 89:267-280.

    PubMed  Google Scholar 

  • Welch M, Todd DE, Whitehead NA, McGowan SJ, Bycroft BW, Salmond GP (2000) N-Acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. EMBO J 19:631-641.

    PubMed  CAS  Google Scholar 

  • White CE, Winans SC (2005) Identification of amino acid residues of the Agrobacterium tumefa-ciens quorum-sensing regulator TraR that are critical for positive control of transcription. Mol Microbiol 55:1473-1486.

    PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365-404.

    PubMed  CAS  Google Scholar 

  • Wijffelman CA, Pees E, van Brussel AA, Hooykaas PJJ (1983) Repression of small bacteriocin excretion in Rhizobium leguminosarum and Rhizobium trifolii by transmissible plasmids. Mol Gen Genet 192:171-176.

    CAS  Google Scholar 

  • Wilkinson A, Danino V, Wisniewski-Dye F, Lithgow JK, Downie JA (2002) N-Acyl-homoserine lactone inhibition of rhizobial growth is mediated by two quorum-sensing genes that regulate plasmid transfer. J Bacteriol 184:4510-4519.

    PubMed  CAS  Google Scholar 

  • Wisniewski-Dyé F, Jones J, Chhabra SR, Downie JA (2002) raiIR genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum. J Bacteriol 184:1597-1606.

    PubMed  Google Scholar 

  • Wood DW, Gong F, Daykin MM, Williams P, Pierson LS III (1997) N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 179:7663-7670.

    PubMed  CAS  Google Scholar 

  • Yan A, Huang X, Liu H, Dong D, Zhang D, Zhang X, Xu Y (2007) An rhl-like quorum-sensing system negatively regulates pyoluteorin production in Pseudomonas sp. M18. Microbiology 153:16-28.

    CAS  Google Scholar 

  • Yang WW, Han JI, Leadbetter JR (2005). Utilization of homoserine lactone as a sole source of carbon and energy by soil Arthrobacter and Burkholderia species. Arch Microbiol 10:1-8.

    Google Scholar 

  • Yao Y, Martinez-Yamout MA, Dickerson TJ, Brogan AP, Wright PE, Dyson HJ (2006) Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. J Mol Biol 355:262-273.

    PubMed  CAS  Google Scholar 

  • Zhang HB, Wang LH, Zhang LH (2002a) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci (USA) 99:4638-4643.

    CAS  Google Scholar 

  • Zhang HB, Wang C, Zhang LH (2004) The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 52:1389-1401.

    PubMed  CAS  Google Scholar 

  • Zhang RG, Pappas T, Brace JL, Miller PC, Oulmassov T, Molyneaux JM, Anderson JC, Bashkin JK, Winans SC, Joachimiak A (2002b) Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature 417:971-974.

    PubMed  CAS  Google Scholar 

  • Zhang Z, Pierson LS III (2001) A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67:4305-4315.

    PubMed  CAS  Google Scholar 

  • Zheng D, Zhang H, Carle S, Hao G, Holden MR, Burr TJ (2003) A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Mol Plant Microbe Interact 16:650-658.

    PubMed  CAS  Google Scholar 

  • Zheng H, Zhong Z, Lai X, Chen WX, Li S, Zhu J (2006) A LuxR/LuxI-type quorum-sensing sys-tem in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation. J Bacteriol 188:1943-1949.

    PubMed  CAS  Google Scholar 

  • Zhu J, Winans SC (2001) The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci (USA) 98:1507-1512.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Michiels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braeken, K., Daniels, R., Ndayizeye, M., Vanderleyden, J., Michiels, J. (2008). Quorum Sensing in Bacteria-Plant Interactions. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_11

Download citation

Publish with us

Policies and ethics