Skip to main content

Molecular Mechanisms of Biocontrol by Trichoderma spp.

  • Chapter
Molecular Mechanisms of Plant and Microbe Coexistence

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Trichoderma spp. are ubiquitous soil fungi. By virtue of their ability to decompose organic matter, they are free-living in soil as saprophytes. However, these species also have the capability to live on other fungi, and the ability to colonize plant roots and rhizosphere. Trichoderma spp. produce a range of hydrolytic enzymes that make them useful in industry (Mach and Zeilinger 2003). These fungi are capable of parasitizing some plant pathogenic fungi that makes them useful as biofungicides (Mukhopadhyay et al. 1992; Chet et al. 1998; Mukhopadhyay and Mukherjee 1996; Harman and Bjorkmann 1998; Hjeljord and Tronsmo 1988) (Fig. 10.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ait-Lahsen H, Soler A, Rev M, de la Cruz J, Monte E, Llobell A (2001) An antifungal exo-alpha-1,3-glucanase from the biocontrol fungus Trichoderma harzianum. Appl Env Microbiol 67:5833-5839

    Article  Google Scholar 

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41-50

    Article  PubMed  Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK, Aldwinckle HS (2001) Synergistic activity of endo-chitinase and exochitinase from Trichoderma atroviride (T harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants Transgenic Res 10:533-543

    Google Scholar 

  • Brunner K, Montero M, Mach RL, Peterbauer CK, Kubicek CP (2003) Expression of the ech42 (endochitinase) gene of Trichoderma atroviride under carbon starvation is antagonized via a BrlA-like cis-acting element. FEMS Microbiol Lett 218:259-264

    Article  PubMed  Google Scholar 

  • Carpenter MA, Stewart A, Ridgway HJ (2005) Identification of novel Trichoderma hamatum genes expressed during mycoparasitism using subtractive hybridization. FEMS Microbiol Lett 251:105-112

    Article  PubMed  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1994) Characterization of ech42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci 10903-10907

    Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929-935

    PubMed  Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and com-mercial applications. Taylor and Francis London, United Kingdom, pp 153-171

    Google Scholar 

  • Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I, Herrera-Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genet 260:218-225

    Article  PubMed  Google Scholar 

  • de las Mercedes Dana M, Limon MC, Mejias R, Mach RL, Benitez T, Pintor-Toro JA, Kubicek CP (2001) Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38:335-342

    Article  PubMed  Google Scholar 

  • de las Mercedes Dana M, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overex-pressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722-730

    Article  PubMed  Google Scholar 

  • Delgado-Jarana J, Sousa S, Gonzalez F, Rey M, Llobell A (2006) ThHog1 controls the hyperos-motic stress response in Trichoderma harzianu. Microbiol 152:1687-1700

    Article  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006a) Sm1, a proteinaceous elici-tor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance Mol Plant Microbe Interact. 19:838-853

    Google Scholar 

  • Djonovic S, Pozo MJ, Kenerley CM (2006b) Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. Appl Environ Microbiol 72:7661-7670

    Article  PubMed  Google Scholar 

  • Donzelli BG, Lorito M, Scala F, Harman GE (2001) Cloning, sequence and structure of a gene encoding an antifungal glucan 1,3-beta-glucosidase from Trichoderma atroviride (T har-zianum). Gene 277:199-208

    Article  PubMed  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321-336

    Article  PubMed  Google Scholar 

  • Flores A, Chet I, Herrera-Estrella A (1997) Improved biocontrol activity of Trichoderma har-zianum by over-expression of the proteinase-encoding gene prb1 Curr Genet 31:30-37

    Google Scholar 

  • Grinyer J, McKay M, Nevalainen H, Helbert BR (2004a) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163-169

    Article  PubMed  Google Scholar 

  • Grinyer J, McKay M, Helbert BR, Nevalainen H (2004b) Fungal proteomics: mapping of the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45:170-175

    Article  PubMed  Google Scholar 

  • Grinyer J, Hunt S, McKay M, Herbert BR, Nevalainen H (2005) Proteomic response of the bio-logical control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381-388

    Article  PubMed  Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathol 94:171-176

    Article  Google Scholar 

  • Harman GE, Bjorkmann T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applica-tions Taylor and Francis London, UK, pp 229-265

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43-56

    Article  PubMed  Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: GE Harman, CP Kubicek (eds) Trichoderma and Gliocladium, vol 2. Enzymes, biological control and commercial applications Taylor and Francis London, UK, pp 129-155

    Google Scholar 

  • Howell CR (1987) Relevance of mycoparasitism in the biological control of Rhizoctonia solani by Gliocladium virens. Phytopathology 77:992-994

    Article  Google Scholar 

  • Howell CR (2002) Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp and its biological control with Trichoderma spp. Phytopathology 92:177-180

    Article  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4-10

    Article  Google Scholar 

  • Howell CR, Puckhaber LS (2005) A study of the characteristics of P and Q strains of Trichoderma virens to account for differences in biological control efficacy against cotton seedling diseases. Biol Control 33:217-222

    Article  Google Scholar 

  • Howell CR, Stipanovic RD (1995) Mechanisms in the biocontrol of Rhizoctonia solani- induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology 85:469-472

    Article  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Technol 3:435-441

    Article  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248-252

    Article  PubMed  Google Scholar 

  • Inbar J, Chet I (1992) Biomimics of fungal cell-cell recognition by use of lectin-coated nylon fibres. J Bacteriol 174:1055-1059

    PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism- from biochemistry to genomics. Nat Rev Microbiol 3:937-947

    Article  PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746-785

    Article  PubMed  Google Scholar 

  • Liu M, Zhu J, Sun Z, Xu T (2007) Possible suppression of exogenous β-1,3-glucanase gene gluc78 on rice transformation and growth. Plant Sci 172:888-896

    Article  Google Scholar 

  • Liu PG, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma har-zianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416-423

    Article  PubMed  Google Scholar 

  • Lorito M, Mach RL, Sposato P, Strauss J, Peterbauer CK, Kubicek CP (1996) Mycoparasitic interaction relieves binding of the Cre1 carbon catabolite repressor protein to promoter sequences of the ech42 (endochitinase-encoding) gene in Trichoderma harzianum. Proc Natl Acad Sci USA 93:14868-14872

    Article  PubMed  Google Scholar 

  • Lorito M, Woo SL, Garcia I, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lawrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc Natl Acad Sci USA 95:7860-7865

    Article  PubMed  Google Scholar 

  • Mach RL, Zeilinger S (2003) Regulation of gene expression in industrial fungi: Trichoderma. Appl Microbiol Biotechnol 60:515-522

    PubMed  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858-1863

    PubMed  Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turra D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307-321

    Article  PubMed  Google Scholar 

  • Massart S, Jijakli HM (2007) Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Met 69:229-241

    Article  Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cortes C, Kenerley C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci USA 100:15965-15970

    Article  PubMed  Google Scholar 

  • Mendoza-Mendoza A, Rosales-Saavedra T, Cortes C, Castellanos-Juarez V, Martinez P, Herrera-Estrella A (2007) The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology 153:2137-2147

    Article  PubMed  Google Scholar 

  • Montero M, Sanz L, Rey M, Monte E, Llobell A (2005) BGN163, a novel acidic beta-1-6-glucanase from mycoparasitic fungus Trichoderma harzianum. CECT 2413 FEBS J 272:3441-3448

    Article  Google Scholar 

  • Montero-Barrientos M, Cardoza RE, Gutierrez S, Monte E, Hermosa R (2007) The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T harzianum. Curr Genet 52:45-53

    Article  PubMed  Google Scholar 

  • Mora A, Earle ED (2001) Combination of Trichoderma harzianum endochitinase and a mem-brane-affecting fungicide on control of Alternaria leaf spot in transgenic broccoli plants. Appl Microbiol Biotechnol 55:306-310

    Article  PubMed  Google Scholar 

  • Mukherjee M, Horwitz BA, Sherkhane PD, Hadar R, Mukherjee PK (2006) A secondary metabolite biosynthesis cluster in Trichoderma virens: evidence from analysis of genes underexpressed in a mutant defective in morphogenesis and antibiotic production. Curr Genet 50:193-202

    Article  PubMed  Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signaling is involved in growth, germina-tion, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734-1742

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Haware MP, Jayanthi S (1995a) Preliminary investigations in integrated biocontrol of Botrytis gray mold of chickpea. Ind Phytotpath 48:141-149

    Google Scholar 

  • Mukherjee PK, Mukhopadhyay AN, Sarmah D, Shreshtha SM (1995b) Comparative antago-nistic properties of Gliocladium virens and Trichoderma harzianum on Sclerotium rolfsii and Rhizoctonia solani - its relevance to understanding the mechanisms of biocontrol. J Phytopathol 143:275-279

    Article  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446-455

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz A (2004) Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of Trichoderma virens against plant pathogens. Appl Environ Microbiol 70:542-549

    Article  PubMed  Google Scholar 

  • Mukherjee PK, Hadar R, Pardovitz-Kedmi E, Trushina N, Horwitz BA (2006) MRSP1, encoding a novel Trichoderma secreted protein, is negatively regulated by MAPK. Biochem Biophys Res Commun 350:716-722

    Article  PubMed  Google Scholar 

  • Mukhopadhyay AN, Mukherjee PK (1996) Fungi as fungicides. Int J Trop Plant Dis 14:1-17

    Google Scholar 

  • Mukhopadhyay AN, Shrestha SM, Mukherjee PK (1992) Biological seed treatment for control of soilborne plant pathogens FAO. Plant Prot Bull 40:21-30

    Google Scholar 

  • Noël A, Levasseur C, Le V-Q, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma har-zianum endochitinase gene. Physiol Mol Plant Pathol 67:92-99

    Article  Google Scholar 

  • Olmedo-Monfil V, Mendoza-Mendoza A, Gomez I, Cortes C, Hererra-Estrella A (2002) Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride. Mol Genet Genom 267:703-712

    Article  Google Scholar 

  • Olson HA, Benson DM (2007) Induced systemic resistance and the role of binucleate Rhizoctonia and Trichoderma hamatum 382 in biocontrol of Botrytis blight in geranium. Biol Control 42:233-241

    Article  Google Scholar 

  • Peterbauer C, Brunner K, Mach RL, Kubicek CP (2002a) Identification of the N-acetyl-D-glu-cosamine-inducible element in the promoter of the Trichoderma atroviride bag1 gene encod-ing N-acetyl-glucosamidase. Mol Genet Genomics 267:162-170

    Article  PubMed  Google Scholar 

  • Peterbauer C, Litscher D, Kubicek CP (2002b) The Trichoderma atroviride seb1 (stress response element binding) gene encodes an AGGGG-binding protein which is involved in the response to high osmolarity stress. Mol Genet Genomics 268:223-231

    Article  PubMed  Google Scholar 

  • Pozo MJ, Baek JM, Garcia JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine pro-tease-encoding gene in the biocontrol agent Trichoderma virens Fungal Genet Biol 41:336-348

    Google Scholar 

  • Reithner B, Brunner K, Schumacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G pro-tein alpha ?subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and dif-ferential production of antifungal metabolites Fungal Genet Biol 42:749-760

    Google Scholar 

  • Reithner B, Brunner K, Schumacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123-1133; doi:101016/jfgb200704001

    Article  PubMed  Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atrovir-ide G-protein alpha subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594-605

    Article  PubMed  Google Scholar 

  • Sakuno E, Yabe K, Hamasaki T, Nakajima H (2000) A new inhibitor of 5′-hydroxyaverantin dehydrogenase, an enzyme involved in aflatoxin biosynthesis, from Trichoderma hamatum J Nat Prod 63:1677-1678

    Google Scholar 

  • Samac DA, Tesfaye M, Dornbusch M, Saruul P, Temple SJ (2004) A comparison of constitutive pro-moters for expression of transgenes in alfalfa (Medicago sativa). Transgenic Res 13:349-361

    Article  PubMed  Google Scholar 

  • Sanz L, Montero M, Redondo J, Llobell A, Monte E (2005) Expression of an alpha-1,3-glucanase during mycoparasitic interaction of Trichoderma asperellum. FEBS J 272:493-499

    Article  PubMed  Google Scholar 

  • Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923-5939

    Article  PubMed  Google Scholar 

  • Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006a) Epl1, the major secreted pro-tein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346-4359

    Article  PubMed  Google Scholar 

  • Seidl V, Schmoll M, Scherm B, Balmas V, Seiboth B, Migheli Q, Kubicek CP (2006b) Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiol Lett 257:145-151

    Article  PubMed  Google Scholar 

  • Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma har-zianum in relation to pathogenicity to insects. Enz Micro Technol 40(4):961-968

    Article  Google Scholar 

  • Shanmugam V, Sriram S, Babu S, Nandakumar R, Raguchander T, Balasubramanian P, Samiyappan R (2001) Purification and characterization of an extracellular alpha-glucosidase protein from Trichoderma viride which degrades a phytotoxin associated with sheath blight disease in rice. J Appl Microbiol 90:320-329

    Article  PubMed  Google Scholar 

  • Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol 142:1169-1179

    Article  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluo-rescens in tomato. Lett Appl Microbiol 38:169-175

    Article  PubMed  Google Scholar 

  • Sivasithamparam K, Ghisalbarti E (1998) Secondary metabolism. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 1. Basic biology, taxonomy and genetics Taylor and Francis London, UK, pp 139-191

    Google Scholar 

  • Suarez MB, Sanz L, Chamorro MI, Rey M, Gonzalez FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924-934

    Article  PubMed  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum is involved in plant root colonization. Mol Plant Path 7:249-258

    Article  Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002a) Expression regu-lation of the endochitinase chit36 from Trichoderma asperellum (T harzianum T203). Curr Genet 42:114-122

    Article  PubMed  Google Scholar 

  • Viterbo A, Ramot O, Chemir I, Chet I (2002b) Significance of lytic enzymes from Trichoderma spp in the biocontrol of fungal plant pathogens. Anton Leewenhoek 81:549-556

    Article  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen-activated protein kinase signaling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241-6246

    Article  PubMed  Google Scholar 

  • Vizcaino JA, Sanz L, Cardoza RE, Monte E, Gutierrez S (2005) Detection of putative peptide synthetase genes in Trichoderma species: application of this method to the cloning of a gene from T harzianum CECT 2413. FEMS Microbiol Lett 244:139-148

    Article  PubMed  Google Scholar 

  • Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862-20868

    Article  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (1994) Mutational analysis of gliotoxin production by the biocontrol fungus Gliocladium virens in relation to suppression of Pythium damping-off Phytopathology 84:816-821

    Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (2001) Peptide synthetase gene in Trichoderma virens. Appl Environ Microbiol 67:5055-5062

    Article  PubMed  Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach R, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1999) Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12:419-429

    Article  Google Scholar 

  • Xu JR (2000) Map kinases in fungal pathogens Fungal Genet Biol 31:137-152

    Google Scholar 

  • Yates IE, Meredith F, Smart W, Bacon CW, Jaworski AJ (1999) Trichoderma viride suppresses fumonisin B1 production by Fusarium moniliforme. J Food Prot 62:1326-1332

    PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061-1070

    PubMed  Google Scholar 

  • Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863-873

    Article  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Env Microbiol 69:7343-7353

    Article  Google Scholar 

  • Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131-140

    Article  PubMed  Google Scholar 

  • Zeilinger S, Reithner B, Scala V, Piessl I, Lorito M, Mach R (2005) Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591-1597

    Article  PubMed  Google Scholar 

  • Zhou X, Xu S, Liu L, Chen J (2007) Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bio Res Technol 98:2958-2962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. K. Mukherjee or A. N. Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mukherjee, P.K., Nautiyal, C.S., Mukhopadhyay, A.N. (2008). Molecular Mechanisms of Biocontrol by Trichoderma spp.. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_10

Download citation

Publish with us

Policies and ethics