Skip to main content

Plant Associated Soil Micro-organisms

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 15))

Roots constitute important plant organs for water and nutrient uptake. However, they also release a wide range of carbon compounds of low molecular weight. These can amount to between 10% and 20% of total net fixed carbon (Rovira 1991) and form the basis for an environment rich in diversified microbiological populations, the rhizosphere (Hiltner 1904). The rhizosphere has been defined as a narrow zone of soil which is influenced by living roots. Bacteria are an important part of micro-organisms inhabiting this ecological niche. Abundance and turnover of rhizobacteria are regulated by microfaunal grazers such as protozoa. Consequently, beneficial effects of protozoa on plant growth have been related to nutrients released from consumed bacterial biomass. This has been termed ‘microbial loop’ (Bonkowski 2004) and works as follows: organic compounds released from roots stimulate bacterial growth. Bacteria can solubilize nutrients from the mineral soil layer, but will sequester them. Consumption of bacteria by soil protozoa and nematodes will then liberate nutrients, which in due course will become available for plants. Fungi form another important part of the rhizosphere. Most terrestrial plants develop symbiotic structures (mycorrhiza) with soil-borne fungi. In these interactions the fungal partner provides the plant with improved access to water and soil nutrients due to more or less complex hyphal structures, which emanate from the root surface and extend far into the soil. The plant, in return, supplies carbohydrates for fungal growth and maintenance (Hampp and Schaeffer 1998; Smith and Read 1997). Due to leakage and the turnover of mycorrhizal structures, these solutes are also released into the mycorrhizosphere where they can be accessed by the other micro-organisms. It has been shown that microbial communities within the rhizosphere are distinct from those of non-rhizosphere soil (Curl and Truelove 1986; Whipps and Lynch 1986).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycor-rhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils 32:401-409

    Google Scholar 

  • Adomas A, Eklund M, Johansson M, Asiegbu FO (2006) Identification and analysis of differen-tially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 57:26-39

    PubMed  CAS  Google Scholar 

  • Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actino-mycetes. New Phytol 112:423-427

    Google Scholar 

  • Andersson BE, Lunderstadt S, Tornberg K, Schnurwr Y, Oberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on indigenous soil bacteria. Environ Toxicol Chem 22:1238-1243

    PubMed  CAS  Google Scholar 

  • Andrade G, Mihara KL, Lindermann RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71-79

    CAS  Google Scholar 

  • Antai SP, Crawford DL (1981) Degradation of softwood, hardwood, and grass lignocelluloses by two streptomyces strains. Appl Environ Microbiol 42:378-380

    PubMed  CAS  Google Scholar 

  • Arnold AE, Maynard Z, Gilbert GS, Coley PD, Kursar TA (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3:267-274

    Google Scholar 

  • Artursson V, Finlay R, Janssonet JK (2005) Combined bromodeoxyuridine immunocapture and terminal-restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7:1952-1966

    PubMed  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1-10

    PubMed  CAS  Google Scholar 

  • Asiegbu F, Adomas A, Stenlid J (2005) Pathogen profile: conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Path 6:395-405

    Google Scholar 

  • Aspray TJ, Jones E, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacte-ria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25-33

    PubMed  CAS  Google Scholar 

  • Azcon R, Azcon G, de Aguilar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359-364

    CAS  Google Scholar 

  • Bacon CW, Porter JK, Robbins JD, Luttrell ES (1977) Epichloë typhina from toxic tall fescue grasses. Appl Environ Microbiol 34:576-581

    PubMed  CAS  Google Scholar 

  • Bae H, Kim MS, Sicher RC, Bae HJ, Bailey BA (2006) Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex cascade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141:1056-1067

    PubMed  CAS  Google Scholar 

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to fusarium head blight. Annu Rev Phytopathol 42:135-161

    PubMed  CAS  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27:41-55

    PubMed  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761-1778

    PubMed  CAS  Google Scholar 

  • Barka EA, Belarbi A, Hachet C, Nowak J, Audran J-C (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacte-ria. FEMS Microbiol Lett 186:91-95

    PubMed  CAS  Google Scholar 

  • Barrett B (1958) Synthesis of mycorrhiza with pure cultures of Rhizophagus. Phytopathology 48:391

    Google Scholar 

  • Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol 50:82-89

    PubMed  CAS  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50:521-577

    PubMed  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites: a personal view. J Antibiot 58:1-26

    PubMed  CAS  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243-4248

    PubMed  CAS  Google Scholar 

  • Bevivino A, Sarrocco S, Dalmastri C, Tabacchioni S, Cantale C, Chiarini L (1998) Characterization of a free-living maize-rhizosphere population of Burkholderia cepacia: effect of seed treat-ment on disease suppression and growth promotion of maize. FEMS Microbiol Ecol 27:225-237

    CAS  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endo-symbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005-3010

    PubMed  CAS  Google Scholar 

  • Bidartondo MI, Bruns TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Mol Ecol 14:1549-1560

    PubMed  CAS  Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc Biol Sci 271:1799-1806

    CAS  Google Scholar 

  • Biswass JC, Ladha JK, Dazzo FB (2000) Rhizobia inoculation improves nutrient uptake and growth in lowland rice. Soil Sci Soc Am J 64:1644-1650

    Google Scholar 

  • Biswass JC, Ladha JK, Dazzo FB, Yanni YG, Rolfe BG (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880-886

    Google Scholar 

  • Boddy L (1993) Saprotrophic cord-forming fungi: warfare strategies and other ecological aspects. Mycol Res 97:641-655

    Google Scholar 

  • Boddy L (1999) Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous envi-ronments. Mycologia 91:13-32

    Google Scholar 

  • Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185-194

    PubMed  CAS  Google Scholar 

  • Boddy L, Griffith GS (1989) Role of endophytes and latent invasion in the development of decay communities in sapwood of angiospermous trees. Sydowia 41:41-73

    Google Scholar 

  • Boddy L, Watkinson SC (1995) Wood decomposition, higher fungi, and their role in nutrient redistribution. Can J Bot 73:S1377-S1383

    Google Scholar 

  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin-A-Woeng TF, Lugtenberg BJ, Bloemberg GV (2003) Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 16:983-993

    PubMed  CAS  Google Scholar 

  • Bolwerk A, Lagopodi AL, Lugtenberg BJ, Bloemberg GV (2005) Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot. Mol Plant Microbe Interact 18:710-721

    PubMed  CAS  Google Scholar 

  • Bomberg M, Jurgens G, Saano A, Sen R, Timonen S (2003) Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus micro-cosms. FEMS Microbiol Ecol 43:163-171

    PubMed  CAS  Google Scholar 

  • Bonkowski M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162:617-631

    Google Scholar 

  • Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biol Biochem 34:1709-1715

    CAS  Google Scholar 

  • Bonkowski M, Jentschke G, Scheu S (2001) Contrasting effects of microbial partners in the rhizo-sphere: interactions between Norway spruce seedlings (Picea abies Karst.), mycorrhiza (Paxillus involutus (Batsch) Fr.) and naked amoebae (protozoa) Appl Soil Ecol 18:193-204

    Google Scholar 

  • Bonsall RF, Weller DM, Thomashow LS (1997) Quantification of 2,4-diacetylphloroglucinol pro-duced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63:951-955

    PubMed  CAS  Google Scholar 

  • Booth MG (2004) Mycorrhizal networks mediate overstorey-understorey competition in a temper-ate forest. Ecol Lett 7:538-546

    Google Scholar 

  • Brencic A, Winans SC (2005) Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 69:155-194

    PubMed  CAS  Google Scholar 

  • Brooks DS, Gonzales CF, Apple DN, Filer TH (1994) Evaluation of endophytic bacteria as poten-tial biological control agents for oak wilt. Biol Control 4:373-381

    Google Scholar 

  • Brundrett M, Kendrick B (1990) The roots and mycorhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytologist 114:469-479

    Google Scholar 

  • Cairney JWG, Merhag AA (2002) Interactions between ectomycorrhizal fungi and soil sapro-trophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot 80:803-809

    Google Scholar 

  • Cao L, Qiu Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic strepto-mycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol Lett 247:147-152

    PubMed  CAS  Google Scholar 

  • Capellano A, Dequatre B, Valla G, Moiroud A (1987) Root nodule formation by Penicillium sp. on Alnus glutinosa and Alnus incana. Plant Soil 104:45-52

    Google Scholar 

  • Carroll GC (1995) Forest endophytes: pattern and process. Cana J Bot 73:1316-1324

    Google Scholar 

  • Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robison R, Condron MAM, Teplow DB, Stevens D, Yaver D (2002) Munumbicins, wide-spectrum antibiotics pro-duced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675-2685

    PubMed  CAS  Google Scholar 

  • Castillo UF, Strobel GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, VIel S, Codde M, Robison R, Porter H, Jensen J (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296-300

    PubMed  CAS  Google Scholar 

  • Céspedes R, Gonzáles B, Vicuña R (1997) Characterisation of a bacterial consortium degrading the lignin model compound vanillyl-β-D-glucopyranoside. J Basic Microbiol 3:175-180

    Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. PNAS USA 100 (2):14555-14561

    PubMed  CAS  Google Scholar 

  • Chamberlain K, Crawford DL (1999) In vitro and vivo antagonism of pathogenic turfgrass fungi by Streptomyces hygroscopicus strains YCED9 and WYE53. J Ind Microbiol Biotechnol 23:641-646

    PubMed  CAS  Google Scholar 

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ecomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733-1740

    CAS  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutri-ent limitation in the grasses Lolium perenne and Festuca arundinacea New Phytol 111:89-97

    Google Scholar 

  • Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonis-tic to fungal plant pathogens. Appl Environ Microbiol 61:1720-1726

    PubMed  CAS  Google Scholar 

  • Chernin LS, de la Fuente L, Sobolev V, Haran S, Vorgias CE, Oppenheim AB, Chet I (1997) Molecular cloning, structural analysis and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Microbiology 63:834-839

    CAS  Google Scholar 

  • Chi F, Shen S-H, Cheng H-P, Jing Y-X, Yanni YG, Dazzo FB (2005) Ascending migration of endophytic Rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271-7278

    PubMed  CAS  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia com-plex species: health hazards and biotechnological potential. Trends Microbiol 14:277-286

    PubMed  CAS  Google Scholar 

  • Christensen MJ (1996) Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australasian Plant Pathol 25:186-191

    Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742-1744

    PubMed  CAS  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbi-osis with grasses. Am Naturalist 160:99-127

    Google Scholar 

  • Cocito C, Di Giambattista M, Nyssen E, Vannuffel P (1997) Inhibition of protein synthesis by streptogramins and related antibiotics. J Antimicrob Chemother 39:7-13

    PubMed  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bac-teria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951-4959

    PubMed  CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fuiimoto D, Mazzola, M, Bangera G, Kim D (1995) Molecular mechanisms of defense by rhizobacteria against root disease. PNAS USA 92:4197-4201

    PubMed  CAS  Google Scholar 

  • Cornelis P, Matthijs S (2002) Diversity of siderophore-mediated iron uptake systems in fluores-cent pseudomonads: not only pyoverdines. Environ Microbiol 4:787-798

    PubMed  CAS  Google Scholar 

  • Couteaudier Y, Alabouvette C (1990) Quantitative comparison of Fusarium oxysporum competi-tiveness in relation to carbon utilization. FEMS Microbiol Let 74:261-267

    CAS  Google Scholar 

  • Crawford DL (1978) Lignocellulose decomposition by selected streptomyces strains. Appl Environ Microbiol 35:1041-1045

    PubMed  CAS  Google Scholar 

  • Crawford DL, Lynch JM, Whipps JM, Ousley MA (1993) Isolation and characterization of actino-mycete antagonists of a fungal root pathogen. Appl Environ Microbiol 59:3899-3905

    PubMed  CAS  Google Scholar 

  • Curl EA, Truelove B (1986) The Rhizosphere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibi-otic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051-1058

    PubMed  CAS  Google Scholar 

  • De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Vol II. Hofmeister’s handbook of physiological botany. Leipzig

    Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795-811

    PubMed  Google Scholar 

  • Demain AL (1981) Industrial microbiology. Science 214:987-994

    PubMed  CAS  Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a spe-cific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743-755

    PubMed  CAS  Google Scholar 

  • Dew RK, Boissonneault GA, Gay N, Boling JA, Cross RJ, Cohen DA (1990) The effect of the endophyte (Acremonium coenophialum) and associated toxin (s) of tall fescue on serum titer response to immunization and spleen cell flow cytometry analysis and response to mitogens. Vet Immunol Immunopathol 26:285-295

    PubMed  CAS  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375-382

    Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:153-162

    Google Scholar 

  • Dong Y-H, Xu J-L, Li X-Z, Zhang LH (2000) AiiA, a novel enzyme inactivates acyl homoserine-lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci (USA) 97:3526-3531

    CAS  Google Scholar 

  • Dowkiw A, Husson C, Frey P, Pinon J, Bastien C (2003) Partial resistance to Melampsora larici-populina leaf rust in hybrid poplars: genetic variability in inoculated excised leaf-disk bioassay and relationship with complete resistance. Phytopathology 93:421-427

    PubMed  CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41:501-538

    PubMed  CAS  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of plant defense systems. In: Douds D, Kapulnik Y (eds) Arbuscular mycorrhizas: molecular biology and physiology. Kluwer, Dordrecht, pp 173-200

    Google Scholar 

  • Dunne C, Crowley JJ, Moënne-Loccoz Y, Dowling DN, de Bruijn FJ, O’Gara F (1998) Biological control of Phytium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracel-lular proteolytic activity. Microbiology 143:3921-3931

    Google Scholar 

  • Dunne C, Moenne-Loccoz Y, de Bruijn FJ, O’Gara F (2000) Overproduction of an inducible extra-cellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology 146:2069-2078

    PubMed  CAS  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599-611

    PubMed  CAS  Google Scholar 

  • Duponnois R, Garbaye J, Bouchard D, Churin JL (1993) The fungus-specificity of mycorrhization helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrhizal inocula-tion of bare-root Douglas-fir planting stocks with Laccaria laccata. Plant Soil 157:257-262

    Google Scholar 

  • Duponnois R, Assikbetse K, Ramanankierana H, Kisa M, Thioulouse J, Lepage M (2006) Litter-forager termite mounds enhance the ectomycorrhizal symbiosis between Acacia holo-sericea A. Cunn. Ex G. Don and Scleroderma dictyosporum isolates. FEMS Microbiol Ecol 56:292-303

    PubMed  CAS  Google Scholar 

  • Eckwall EC, Schottel JL (1997) Isolation and characterization of an antibiotic produced by the scab disease-suppressive Streptomyces diastatochromogenes strain PonSSII J. Ind Microbiol Biotechnol 19:220-225

    PubMed  CAS  Google Scholar 

  • El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM (1993) Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149:185-195

    Google Scholar 

  • Endre G, Kereszt A, Kevel Z, Milhacea S, Kalo P, Kiss G (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962-966

    PubMed  CAS  Google Scholar 

  • Ezra D, Castillo UF, Strobel GA, Hess WM, Porter H, Jensen JB, Condron MAM, Teplow DB, Sears J, Maranta M, Hunter M, Weber B, Yaver D (2004). Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp. Microbiology 150:785-793

    PubMed  CAS  Google Scholar 

  • Feller IC (1995) Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecol Monogr 65:477-505

    Google Scholar 

  • Fiedler HP, Krastel P, Muller J, Gebhardt K, Zeeck A (2001) Enterobactin: the characteristic cate-cholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett 196:147-151

    PubMed  CAS  Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of vegetative mycelium of ectomycor-rhizal plants. I. Translocation of “%C-labelled carbon between plants interconnected by a common mycelium. New Phytologist 103:143-156

    Google Scholar 

  • Finlay RD, Read DJ (1986) The structure and function of the vegetetive mycelium of ectomycor-rhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytologist 103:157-165

    Google Scholar 

  • Finlay R, Söderström B (1992) Mycorrhiza and carbon flow in the soil. In: Allen MJ (ed) Mycorrhizal functioning. Chapman & Hall, New York, pp 134-160

    Google Scholar 

  • Firn RD, Jones CG (2000) The evolution of secondary metabolism - a unifying model. Mol Microbiol 37:989-994

    PubMed  CAS  Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123-132

    Google Scholar 

  • Fitter AH, Garbaye J (1994) Interactions between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere micro-organisms. New Phytol 141:525-533

    Google Scholar 

  • Foster RC, Marks GC (1966) The fine structure of the mycorrhizas of Pinus radiata. Australian J Biol Sci 19:1027-1038

    Google Scholar 

  • Foster RC, Marks GC (1967) Observations on the mycorrhizas of forest trees. II. The rhizosphere of Pinus radiata D. Don. Austral J Biol Sci 20:915-926

    Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81-89

    Google Scholar 

  • Fracchia S, Garcia-Romera I, Godeas A, Ocampo JA (2000) Effect of the saprophytic fungus Fusarium oxysporum on arbuscular mycorrhizal colonization and growth of plants in green-house and field trials. Plant Soil 223:175-184

    CAS  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337-359

    PubMed  CAS  Google Scholar 

  • Fravel D, Olivain C, Alabouvette C (2003) Fusarium oxysporum and its biocontrol. New Phytologist 157:493-502

    Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomands associated with the Douglas fir - Laccaria bicolour mycorrhizo-sphere. Appl Environ Microbiol 63:1852-1860

    PubMed  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizo-sphere fluorescent pseudomonads. New Phytol 165:317-328

    PubMed  Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. New Zealand J Forest Sci 5:33-41

    Google Scholar 

  • Gafur A, Schutzendubel A, Langenfeld-Heyser R, Fritz E, Polle A (2004) Compatible and incom-petent Paxillus involutus isolates for ectomycorrhiza formation in vitro with poplar (Populus x canescens) differ in H2O2 production. Plant Biol 6:91-99

    PubMed  CAS  Google Scholar 

  • Gage DJ (2004) Infection and invasion of toots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:280-300

    PubMed  CAS  Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophs. Revue Générale de Botanique 17:5-48, 66-83, 123-135, 223-239, 313-325,425-433, 479-500

    Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluo-rescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:229-234

    Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197-210

    Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of mycorrhizal infection of Pinus radiata by some micro-organisms associated with the mantle of ectomycorrhizas. New Phytol 112:383-388

    Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404-411

    PubMed  CAS  Google Scholar 

  • Garcia-Romera I, Garcia-Garrido JM, Martin J, Fracchia S, Mujica MT, Godeas A, Ocampo JA (1998) Interactions between saprotrophic Fusarium strains and arbuscular mycorrhizas of soybean plants. Symbiosis 24:235-246

    Google Scholar 

  • Gasoni L, Stegman De Gurfinkel B (1997) The endophyte Cladorrhinum foecundissimum in cot-ton roots: phosphorus uptake and host growth. Mycological Res 101:867-870

    Google Scholar 

  • Gerdemann JW (1965) Vesicular-arbuscular mycorrhizae of maize and tuliptree by Endogone fas-ciculata. Mycologia 57:562-575

    Google Scholar 

  • Glienke-Blanco C, Aguilar-Vildoso CI, Vieira MLC, Barroso PAV, Azevedo JL (2002) Genetic variability in the endophytic fungus Guignardia citricarpa isolated from citrus plants. Genet Mol Biol 25:251-255

    CAS  Google Scholar 

  • Goodfellow M, Williams ST (1983) Ecology of actinomycetes. Annu Rev Microbiol 37:189-216

    PubMed  CAS  Google Scholar 

  • Goyer C, Vachon J, Beaulieu C (1998) Pathogenicity of Streptomyces scabies mutants altered in Thaxtomin A production. Phytopathology 88:442-445

    PubMed  CAS  Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytologist 149:357-359

    Google Scholar 

  • Gramms G, Voigt K-D, Kirsche B (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soil. Biodegradation 10:51-62

    Google Scholar 

  • Grant SR, Fisher EJ, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425-449

    PubMed  CAS  Google Scholar 

  • Greaves H (1971) The bacterial factor in wood decay. Wood Sci Technol 5:6-16

    Google Scholar 

  • Gregor AK, Klubek B, Varsa EC (2003) Identification and use of actinomycetes for enhanced nodu-lation of soybean co-inoculated with Bradyrhizobium japonicum. Can J Microbiol 49:483-491

    PubMed  CAS  Google Scholar 

  • Griffin DM (1985) A comparison of the roles of bacteria and fungi. In: Leadbetter ER, Pointdexter JS (eds) Bacteria in nature . Bacterial activities in perspective, vol 1 Acdemic Press, London. pp 221-255

    Google Scholar 

  • Griffith BS, Bonkowski M, Dobson G, Caul S (1999) Changes in soil microbial community struc-ture in the presence of microbial-feeding nematodes and protozoa. Pedobiologia 43:297-304

    Google Scholar 

  • Grunwald NJ, Flier WG (2005) The biology of Phytophthora infestans at its center of origin. Annu Rev Phytopathol 43:171-190

    PubMed  CAS  Google Scholar 

  • Gryndler M, Vosatka M (1996) The response of Glomus fistulosum-maize mycorrhiza to treat-ments with culture fractions from Pseudomonas putida. Mycorrhiza 6:207-211

    Google Scholar 

  • Haahtela K, Laakso T, Korhonen TK (1986) Associative nitrogen fixation by Klebsiella spp.: adhesion sites and inoculation effects on grass roots. Appl Environ Microbiol 52:1074-1079

    PubMed  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomon-ads. Nat Rev Microbiol 3:307-319

    PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Ann Rev Phytopathol 41:117-153

    CAS  Google Scholar 

  • Hallman J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant para-sitic nematodes and soil-borne plant pathogenic fungi. Eur J Plant Pathol 102:155-162

    Google Scholar 

  • Hallmann J, Quadt Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895-914

    Article  CAS  Google Scholar 

  • Hampp R, Schaeffer C (1998) Mycorrhiza - carbohydrate and energy metabolism. In: Varma A, Hock B (eds) Mycorrhiza - structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 273-303

    Google Scholar 

  • Hartnett DC, Wilson GWT (1999) Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecol 80:1187-1195

    Article  Google Scholar 

  • Hartnett DC, Hetrick BAD, Wilson GWT, Gibson DJ (1993) Mycorrhizal influence on intra- and interspecific neighbour interactions among co-occuring prairie grasses. J Ecol 81:787-795

    Google Scholar 

  • Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191-218

    Google Scholar 

  • Hause B, Fester T (2005) Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221:184-196

    PubMed  CAS  Google Scholar 

  • Hendrickson OQ (1991) Abundance and activity of N2-fixing bacteria in decaying wood. Can J For Res 21:1299-1304

    Google Scholar 

  • Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648-656

    PubMed  CAS  Google Scholar 

  • Henningston B (1967) Interactions between micro-organisms found in birch and aspen pulpwood. Stud For Suec 53:1-32

    Google Scholar 

  • Herrmann S, Oelmüller R, Buscot F (2004) Manipulation of the onset of ectomycorrhiza forma-tion by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum: influence on plant development and photosynthe-sis. J Plant Phys 161:509-517

    CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi inde-pendent of a plant host. Appl Environ Microbiol 68:1919-1924

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006) The bacterium Paenibacillus validus stimu-lates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258-267

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59-78

    Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336-339

    Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258-264

    Google Scholar 

  • Huitema E, Bos JI, Tian M, Win J, Waugh ME, Kamoun S (2004) Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 12:193-200

    PubMed  CAS  Google Scholar 

  • Igarashi Y, Ogawa M, Sato Y, Saito N, Yoshida R, Kunoh H, Onaka H, Furumai T (2000) Fistupyrone, a novel inhibitor of the infection of Chinese cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569. J Antibiot 53:1117-1122

    PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneu-moniae 342. MPMI 17:1078-1085

    PubMed  CAS  Google Scholar 

  • Janos DP (1987) VA mycorrhizas in humid tropical ecosystems. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 107-134

    Google Scholar 

  • Jennings DH (1987) Translocation of solutes in fungi. Biol Rev 62:215-243

    CAS  Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial inoculation in the mycorhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1-13

    PubMed  CAS  Google Scholar 

  • Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomy-corrhizal species richness on tree seedling productivity. Oikos 93:353-364

    Google Scholar 

  • Judelson HS, Blanco FA (2005) The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol 3:47-58

    PubMed  CAS  Google Scholar 

  • Kang Y, Carlson R, Trappe J, Schell MA (1998) Characterisation of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl Environ Microbiol 64:3939-3947

    PubMed  CAS  Google Scholar 

  • Karlsson M, Olson A, Stenlid J (2003) Expressed sequences from the basidiomycetous tree patho-gen Heterobasidion annosum during early infection of scots pine. Fungal Genet Biol 39:51-59

    PubMed  CAS  Google Scholar 

  • Keel C, Defago G (1997) Interactions between beneficial soil bacteria and root pathogens: mecha-nisms and ecological impact. In: Gange AC, Brown VK (eds) Multitrophic interactions in ter-restrial system. Blackwell Science, Oxford, p 27

    Google Scholar 

  • Keller S, Schneider K, Sussmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiotics (Tokyo) 59:801-803

    CAS  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211-236

    PubMed  CAS  Google Scholar 

  • Kerry BR (2000) Rhizospheric interactions and the exploitation of microbial agents for the bio-logical control of plant parasitic nematodes. Annu Rev Phytopathol 38:423-441

    PubMed  CAS  Google Scholar 

  • Kers JA, Cameron KD, Joshi MV, Bukhalid RA, Morello JE, Wach MJ, Gibson DM, Loria R (2005) A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces spe-cies. Mol Microbiol 55:1025-1033

    PubMed  CAS  Google Scholar 

  • King RR, Lawrence H, Calhount LA (1992) chemistry of phytotoxins associated with Streptomyces scabies, the causal organism of potato common scab. J Agric Food Chem 40:834-837

    CAS  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39-85

    PubMed  CAS  Google Scholar 

  • Klironomos JN (2002) Variation in plant responses to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292-2301

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1978) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317-320

    Google Scholar 

  • Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199-236

    Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite - what decides? Curr Opin Plant Biol 9:358-363

    PubMed  Google Scholar 

  • Kondo Y, Shomura T, Ogawa Y, Tsuruoka T, Watanabe H, Totukawa K, Suzuki T, Moriyama C, Yoshida J, Inouye S, Niida T (1973) Studies on a new antibiotic SF-1293. 1. Isolation and physico-chemical and biological characterization of SF-1293 substances. Sci Rep Meiji Seika 13:34-41

    Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol. 16(2):133-141

    PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6-15

    PubMed  CAS  Google Scholar 

  • Lagopodi AL, Ram AF, Lamers GE, Punt PJ, Van den Hondel CA, Lugtenberg BJ, Bloemberg GV (2002) Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol Plant Microbe Interact 15:172-179

    PubMed  CAS  Google Scholar 

  • Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudié M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytologist 164:505-513

    CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, Van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248-254

    PubMed  Google Scholar 

  • Lang E, Kleeberg I, Zadrazil F (1997) Competition of Pleurotus sp. and Dichomitus squalens with soil micro-organisms during lignocellulose decomposition. Biores Technol 60:95-99

    CAS  Google Scholar 

  • Larkin RP, Fravel DR (1999) Mechanisms of action and dose-response relationships governing bio logical control of Fusarium wilt of tomato by non-pathogenic Fusarium spp. Phytopathology 89:1152-1161

    PubMed  CAS  Google Scholar 

  • Lawrence CH, Clark MC, King RR (1990) Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80:606-608

    CAS  Google Scholar 

  • Leake JR, Donnelly DP, Boddy L (2002) Interactions between ecto-mycorrhizal fungi and sapro-trophic fungi. In: van de Heijden MGA, Sanders I (eds) Mycorrhizal ecology, ecological stud-ies 157. Springer, Berlin Heidelberg New York, pp 345-372

    Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defense response by a mycorrhiza helper bacterium. New Phytol 174:892-903

    PubMed  CAS  Google Scholar 

  • Li G, Asiegbu FO (2004) Use of Scots pine seedling roots as an experimental model to investigate gene expression during interaction with the conifer pathogen Heterobasidion annosum (P-type). J Plant Res 117:155-162

    PubMed  CAS  Google Scholar 

  • Lind M, Olson A, Stenlid J (2006) An AFLP-markers based genetic linkage map of Heterobasidion annosum locating intersterility genes. Fungal Genet Biol 42:519-527

    Google Scholar 

  • Lindahl B, Stenlid J, Olsson S (1999) Translocation of 32P between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183-193

    CAS  Google Scholar 

  • Lindahl B, Stenlid J, Finlay RD (2001) Effects of resource availability on mycelial interactions and 32P-transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43-52

    CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora - the mycorrhizo-sphere effect. Phytopathology 78:366-371

    Google Scholar 

  • Linderman RG, Paulitz TC (1990) Mycorrhizal-rhizobacterial interactions In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 261-283

    Google Scholar 

  • Liras P (1999) Biosynthesis and molecular genetics of cephamycins. Cephamycins produced by actinomycetes. Antonie Leeuwenhoek 75:109-124

    PubMed  CAS  Google Scholar 

  • Liu D, Anderson NA, Kinkel LL (1995) Biological control of potato scab in the field with antago-nistic Streptomyces scabies. Phytopathology 85:827-831

    Google Scholar 

  • Liu D, Anderson NA, Kinkel LL (1996) Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen Can J Microbiol 63:4516-4522

    Google Scholar 

  • Llorens A, Hinojo MJ, Mateo R, Medina A, Valle-Algarra FM, Gonzalez-Jaen MT, Jimenez M (2006) Variability and characterization of mycotoxin-producing Fusarium spp isolates by PCR-RFLP analysis of the IGS-rDNA region. Antonie Van Leeuwenhoek 89:465-478

    PubMed  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65:5357-5363

    PubMed  CAS  Google Scholar 

  • Loria R, Kers J, Joshi M (2006) Evolution of plant pathogenicity in Streptomyces. Ann Rev Phytopathol 44:469-487

    CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacte-ria. Antonie Van Leeuwenhoek 86:1-25

    PubMed  CAS  Google Scholar 

  • Lupway N, Clayton G, Hanson K, Rice W, Bierderbeck V (2004) Endophytic rhizobia in barley, wheat, and canola roots. Can J Plant Sci 84:37-45

    Google Scholar 

  • Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. PhD Thesis, University of Tübingen, Germany

    Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterisation and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 3:129-136

    Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber strains of non-pathogenic Fusarium oxysporum. Phytopathology 81:462-469

    Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark sep-tate endophytic fungi. Stud Mycol 53:173-189

    Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities in degree of prox-imity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127-136

    Google Scholar 

  • Matsuda Y, Hijii N (2004) Ectomycorrhizal fungal communities in an Abies firma forest, with special reference to ectomycorrhizal associations between seedlings and mature trees. Can J Bot 82:822-829

    Google Scholar 

  • Mazumder R, Phelps TJ, Krieg NR, Benoit RE (1999) Determining chemotactic responses by two subsurface microaerophiles using a simplified capillary assay method. J Microbiol Methods 37:255-263

    PubMed  CAS  Google Scholar 

  • Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS III (1992) Contribution of phena-zine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58:2616-2624

    PubMed  CAS  Google Scholar 

  • McCarthy AJ (1987) Lignocellulose-degrading actinomycetes. FEMS Microbiol Rev 46:145-163

    CAS  Google Scholar 

  • McCarthy AJ, Williams ST (1992) Actinomycetes as agents of biodegradation in the environment - a review. Gene 115:189-192

    PubMed  CAS  Google Scholar 

  • McManus PS, Stockwell VO, Sundin GW, Jones AL (2002) Antibiotic use in agriculture. Ann Rev Phytopathol 40:443-465

    CAS  Google Scholar 

  • McNamara BP, Wolfe AJ (1997) Coexpression of the long and short forms of CheA, the chemotaxis histidine kinase, by members of the family Enterobacteriaceae. J Bacteriol 179:1813-1818

    PubMed  CAS  Google Scholar 

  • Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia americana L. Curr Genet 46:158-165

    PubMed  CAS  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsmann J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62:3061-3065

    PubMed  CAS  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specifcity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed.) Mycorrhizal functioning: an integrated plant fungal process. Chapman and Hall, London, pp 357-423

    Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382-391

    PubMed  CAS  Google Scholar 

  • Morgan JA, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interac-tions in the rhizosphere. J Exp Bot 56:1729-1739

    PubMed  CAS  Google Scholar 

  • Murray AC, Woodward S (2003) In vitro interactions between bacteria isolated from sitka spruce stumps and Heterobasidion annosum. Forest Pathol 33:53-67

    Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velzhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73-81

    PubMed  CAS  Google Scholar 

  • Nakayama T, Homma Y, Hashidoko Y, Mizutani J, Tahara S (1999) Possible role of xanthobaccins produced by Stenotrophomonas sp. strain SB-K88 in suppression of sugar beet damping-off disease. Appl Environ Microbiol 65:4334-4339

    PubMed  CAS  Google Scholar 

  • Neeno-Eckwall EC, Kinkel LL, Schottel JL (2001) Competition and antibiosis in the biological control of potato scab Can J Microbiol 47:332-340

    CAS  Google Scholar 

  • Newton JA, Fray RG (2004) Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol 6:213-224

    PubMed  CAS  Google Scholar 

  • Nicol GW, Glover LA, Prosser JL (2003) The impact of grassland management on archaeal com-munity structure in upland pasture rhizosphere soil. Environ Microbiol 5:152-162

    PubMed  CAS  Google Scholar 

  • Nomura K, Melotto M, He SY (2005) Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr Opin Plant Biol 8:361-368

    PubMed  CAS  Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization pattern of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electronmicroscopy study. Can J Microbiol 43:1017-1035

    Article  CAS  Google Scholar 

  • Olivain C, Alabouvette C (1999) Process of tomato root colonization by a pathogenic strain of Fusarium oxysporum f.sp. lycopersici in comparison with a non-pathogenic strain. New Phytol 141:497-510

    Google Scholar 

  • Olivain C, Trouvelot S, Binet M-N, Cordier C, Pugin A, Alabouvette C (2003) Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and non-pathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 69:5453-5462

    PubMed  CAS  Google Scholar 

  • Omura RS, Murata M, Hanaki H, Hiotozawa K, Oiwa R, Tanaka H (1984) Phosalacine, a new herbicidal antibiotic containing phosphinothricin. Fermentation, isolation, biological activity and mechanism of action J Antibiot 37:829

    CAS  Google Scholar 

  • Ongena M, Jourdan E, Schafer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562-569

    PubMed  CAS  Google Scholar 

  • Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryo-phytes from nutrient-poor habitats of the Baltic Sea coast. Appl Environ Microbiol 70:6569-6579

    PubMed  CAS  Google Scholar 

  • Park KS, Moyne AL, Tuzun S, Kim CH, Kloepper JW (1997) Induction of PR-1a promoter in a transgenic tobacco reporter system by selected PGPR strains which induce resistance. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting bacteria: present status and future prospects. Nakanishi Printing, Sapporo, Japan, pp 251-255

    Google Scholar 

  • Pérez-Moreno J, Read DJ (2004) Ectomycorrhizal fungi, living ties that bind and nurture trees in nature. Interciencia 29:239-247

    Google Scholar 

  • Persson T, Baath E, Clarholm M, Lundkvist H, Söderström BE, Sohlenius B, (1980) Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. In: Persson T (ed) Structure and function of northern coniferous forests: an ecosystem study. Ecol Bull Stockholm 32:419-459

    Google Scholar 

  • Peters AF (1991) Field and culture studies of Streblonema-Macrocystis new species Ectocarpales Phaeophyceae from Chile, a sexual endophyte of giant kelp. Phycologia 30:365-377

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews J, Hirano S (eds) Microbial ecol-ogy of leaves. Springer, Berlin Heidelberg New York, pp 179-197

    Google Scholar 

  • Petrini O, Fisher PJ, Petrini LE (1992) Fungal endophytes of bracken (Pteridium aquilinum), with some reflections on their use in biological control. Sydowia 44:282-293

    Google Scholar 

  • Petroski R, Powell RG, Clay K (1992) Alkaloids of Stipa robusta (sleepygrass) infected with an Acremonium endophyte. Nat Toxins 1:84-88

    PubMed  CAS  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743-751

    Google Scholar 

  • Postma J, Luttikholt AJG (1996) Colonisation of carnation stems by a non-pathogenic isolate of Fusarium oxysporum and its effect on Fusarium oxysporum f.sp. dianthi. Can J Bot 74:1841-1851

    Google Scholar 

  • Postma J, Rattink H (1992) Biological control of Fusarium wilt of carnation with a non-pathogenic isolate of Fusarium oxysporum. Can J Bot 70:1199-1205

    Google Scholar 

  • Preszler RW, Gaylord ES, Boecklen WJ (1996) Reduced parasitism of a leaf-mining moth on trees with high infection frequencies of an endophytic fungus. Oecologia 108:159-166

    Google Scholar 

  • Proctor RH, Plattner RD, Brown DW, Seo JA, Lee YW (2004) Discontinuous distribution of fumonisin biosynthetic genes in the Gibberella fujikuroi species complex. Mycol Res 108:815-822

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effet of population density of Pseudomonas fluo-rescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470-475

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek 81:537-547

    PubMed  CAS  Google Scholar 

  • Rangel-Castro JI, Danell E, Pfeffer PE (2002) A 13 C NMR study of exudation and storage of carbohydrates and amino acids in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94:190-199

    CAS  Google Scholar 

  • Ravel C, Courty C, Coudret A, Charmet G (1997) Beneficial effects of Neotyphodium lolii on the growth and the water status in perennial ryegrass cultivated under nitrogen deficiency or drought stress. Agronomie 17:173-181

    Google Scholar 

  • Raviraja NS, Sridhar KR, Bärlocher F (1996) Endophytic aquatic hyphomycetes of roots of plan-tation crops and ferms from India. Sydowia 48:152-160

    Google Scholar 

  • Rayner ADM, Boddy L (1988) Wood decomposition: its biology and ecology. Wiley, Chichester, NY

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376-391

    Google Scholar 

  • Read DJ (1993) Plant microbe mutualisms and community structure. In: Schulze ED, Mooney HA (eds) Biodiversity and ecosystem function (Ecological Studies 99). Springer, Berlin Heidelberg New York, pp 181-209

    Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phylogen Evol 14:276-284

    CAS  Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance gener-ated by plant/fungal symbiosis. Science 298:1581

    PubMed  CAS  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Dobereiner J (2000) Biological dinitrogen fixation in Gramineae and palm trees. Crit Rev Plant Sci 191:227-248

    Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse M-A (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011-1023

    PubMed  CAS  Google Scholar 

  • Richardson DM, Williams PA, Hobbs RJ (1994) Pine invasions in the southern hemisphere: deter-minants of spread and invadability. J Biogeo 21:511-527

    Google Scholar 

  • Riedlinger JM, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fielder HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550-3557

    PubMed  CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56:117-137

    PubMed  CAS  Google Scholar 

  • Rizzo DM, Garbelotto M, Hansen EM (2005) Phytophthora ramorum: integrative research and management of an emerging pathogen in California and Oregon forests. Annu Rev Phytopathol 43:309-335

    PubMed  Google Scholar 

  • Roberts KJ, Anderson RC (2001) Effect of garlic mustard [Alliaria petiolata (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am Midl Nat 146:146-152

    Google Scholar 

  • Robleto EA, Kmiecik K, Oplinger ES, Nienhuis J, Triplett EW (1998) Trifolitoxin production increases nodulation competitivness of Rhizobium etli CE3 under agricultural comditions. Appl. Environ. Microbiol 64:2630-2633

    PubMed  CAS  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369-378

    PubMed  CAS  Google Scholar 

  • Rodelas B, Gonzales-Lozep J, Salmeron V, Martinez-Toledo MV, Pozo V (1998) Symbiotic effec-tiveness and bateriocin production by rhizobium leguminosarum bv viceae isolated from agri-cultural soils in Spain. Appl Soil Ecol 8:51-60

    Google Scholar 

  • Rovira AD (1991) Rhizosphere research - 85 years of progress and frustration. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Amsterdam, pp 3-13

    Google Scholar 

  • Rowan DD, Latch GCM (1994) Utilization of endophyte-infected perennial ryegrasses for increased insect resistance, In: Bacon CW, White JF Jr (eds) Biotechnology of endophytic fungi of grasses. CRC Press, Boca Raton, pp 169-183

    Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wie HX, Pare PW, Kloepper JW (2003) Bacterial vola-tiles promote growth in Arabidopsis. Proc Natl Acad Sci (USA) 100:4927-4932

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017-1026

    PubMed  CAS  Google Scholar 

  • Saari SK, Campbell CD, Russell J, Alexander IJ, Anderson IC (2005) Pine microsatellite markers allow roots and ectomycorrhizas to be linked to individual trees. New Phytol 165:295-304

    PubMed  CAS  Google Scholar 

  • Salerno MI, Gianinazzi S, Gianinazzi-Pearson V (2000) Effects on growth and comparison of root tissue colonization patterns of Eucalyptus viminalis by pathogenic and nonpathogenic strains of Fusarium oxysporum. New Phytol 146:317-324

    Google Scholar 

  • Samac DA, Kinkel LL (2001) Suppression of the root-lesion nematode (Pratylenchus penetrans) in alfalfa (Medicago sativa) by Streptomyces spp. Plant Soil 235:35-44

    CAS  Google Scholar 

  • Samils N, Elfstrand M, Czederpiltz DL, Fahleson J, Olson A, Dixelius C, Stenlid J (2006) Development of a rapid and simple Agrobacterium tumefaciens-mediated transformation sys-tem for the fungal pathogen Heterobasidion annosum. FEMS Microbiol Lett 255:82-88

    PubMed  CAS  Google Scholar 

  • Sampedro I, Aranda E, Scervino JM, Fracchia S, Garcia-Romera I, Ocampo JA, Godeas A (2004) Improvement by soil yeasts of arbuscular mycorrhizal symbiosis of soybean (Glycine max) colonized by Glomus mosseae. Mycorrhiza 14:229-234

    PubMed  CAS  Google Scholar 

  • Samson RA, Frisvad JC (2004) Penicillium: new taxonomic schemes and mycotoxins and other extrolites. Stud Mycol 49:1-266

    Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55:395-403

    PubMed  CAS  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ (2004) Symbioses of grasses with seedborne fungal endophytes Annu Rev Plant Biol 55:315-340

    CAS  Google Scholar 

  • Schottel JL, Shimizu K, Kinkel LL (2001) Relationships of in vitro pathogen inhibition and soil colonization to potato scab biocontrol by antagonistic Streptomyces spp. Biol Control 20:101-112

    Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacte-rium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fun-gus Amanita muscaria. New Phytol 168:205-216

    PubMed  CAS  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet, DOI: 10.1007/s00294-007-0138-x (in press)

    Google Scholar 

  • Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294-308

    Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661-686

    PubMed  Google Scholar 

  • Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996-1004

    CAS  Google Scholar 

  • Schwartz D, Berger S, Heinzelmann E, Muschko K, Welzel K, Wohlleben W (2004) Biosynthetic gene cluster of the herbicide phosphinothricin tripeptide from Streptomyces viridochromogenes Tu494. Appl Environ Microbiol 70:7093-7102

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Faccio A, Scappaticci G, Bonfante P (2004) Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycor-rhizal septomycetes, including truffles. Microb Ecol 47:416-426

    PubMed  CAS  Google Scholar 

  • Sessitsch A, Hackl E, Wenzl P, Kilian A, Kostic A, Stralis-Pavese N, Sandjong BT, Bodrossy L (2006) Diagnostic microbial microarrays in soil ecology. New Phytol 171:719-736

    PubMed  CAS  Google Scholar 

  • Setubal JC, Moreira LM, da Silva AC (2005) Bacterial phytopathogens and genome science. Curr Opin Microbiol 8:595-600

    PubMed  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation of sterile plants with Acetobacter diazo-trophicus wild-type and Nif- mutants strains. Mol Plant Microbe Interact 14:358-366

    PubMed  CAS  Google Scholar 

  • Simon HM, Jahn CE, Bergerud LT, Sliwinski MK, Weimer PJ, Willis DK, Goodman RM (2005) Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from pPlant roots. Appl Environ Microbiol 71:4751-4760

    PubMed  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electro-phoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742-4251

    PubMed  CAS  Google Scholar 

  • Smith CS, Chand T, Harris RF, Andrews JH (1989) Colonization of a submersed aquatic plant, Eurasian water milfoil (Myriophyllum spicatum) by fungi under controlled conditions. Appl Environ Microbiol 55:2326-2332

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function on the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1-38

    CAS  Google Scholar 

  • Sommers E, Vanderleyden J (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Cri Rev Microbiol 30:205-240

    Google Scholar 

  • Spiering MJ, Greer DH, Schmid J (2006) Effects of the fungal endophyte, Neotyphodium lolii, on net photosynthesis and growth rates of perennial Ryegrass (Lolium perenne) are independent of in planta endophyte concentration. Ann Bot 98:379-387

    PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24 (4):487-506

    PubMed  CAS  Google Scholar 

  • Stone JK, Viret O, Petrini O, Chapela I (1994) Histological studies of host penetration and colo-nization by endophytic fungi. In: Petrini O, Ouellette GB (eds) Host wall alterations by para-sitic fungi. American Phytopathological Society Press, St Paul, MN, pp 115-128

    Google Scholar 

  • Stone JK, Bacon CW, White JF (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White F (eds) Microbial endophytes. Marcel Dekker, New York

    Google Scholar 

  • Stracke S, Kistner C, Yoshida S (2002) A plant receptorlike kinase required for both bacterial and fungal symbiosis. Nature 417:959-962

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491-502

    PubMed  CAS  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919-1926

    PubMed  CAS  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic micro-organ-isms. J Nat Prod 67:257-268

    PubMed  CAS  Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Nowak J (1996) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fertil Soils 25:13-19

    Google Scholar 

  • Sturz AV, Christie BR, Matheson BG, Arsenault WJ, Buchanan NA (1999) Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathol 48:360-369

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustain-able systems of crop production. Crit Rev Plant Sci 19:1-30

    Google Scholar 

  • Taechowisan T, Lu C, Shen Y, Lumyong S (2005) Secondary metabolites from endophytic Streptomyces aureofaciens CMUAc130 and their antifungal activity. Microbiology 151:1691-1695

    PubMed  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoreme-diation of toluene. Appl Environ Microbiol 71:8500-8505

    PubMed  CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448-459

    PubMed  CAS  Google Scholar 

  • Tarkka MT, Schrey S, Nehls U (2006) The alpha-tubulin gene AmTuba1: a marker for rapid myc-elial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49:294-301

    PubMed  CAS  Google Scholar 

  • Taylor DL, Bruns TD, Hodges SA (2004) Evidence for mycorrhizal races in a cheating orchid Proc R Soc B Biol Sci 271:35-43

    Google Scholar 

  • Thrane C, Harder Nielsen T, Neiendam Nielsen M, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139-146

    PubMed  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161-2171

    PubMed  CAS  Google Scholar 

  • Toth IK, Birch PR (2005) Rotting softly and stealthily. Curr Opin Plant Biol 8:424-429

    PubMed  CAS  Google Scholar 

  • Tournas VH (2005) Spoilage of vegetable crops by bacteria and fungi and related health hazards. Crit Rev Microbiol 31:33-44

    PubMed  CAS  Google Scholar 

  • Tuncer M, Kuru A, Isikli M, Sahin N, Çelenk FG (2004) Optimization of extracellular endoxyla-nase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey. J Appl Microbiol 79:783-791

    Google Scholar 

  • van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacte-ria. Annu Rev Phytopathol 36:453-483

    PubMed  Google Scholar 

  • Varma A, Singh A, Sahay NS, Sharma J, Roy A, Kumari M, Raha D, Thakran S, Deka D, Bharti K, Hurek T, Blechert O, Rexer K-H, Kost G, Hahn A, Maier W, Walter M, Strack D, Kranner I (2000) Piriformospora indica: an axenically culturable mycorrhiza-like endosymbiotic fungus. In: Hock B (ed) The mycota. Vol IX. Fungal associations. Springer, Berlin Heidelberg New York, pp 125-150

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586

    CAS  Google Scholar 

  • Vicuña R, Gonzáles B, Seelenfreund D, Ruttimann C, Salas L (1993) Ability of natural bacterial isolates to metabolize high and low-molecular-weight lignin-derived molecules. J Biotechnol 30:9-13

    Google Scholar 

  • Vivas A, Voros I, Biro B, Campos E, Barea JM, Azcon R (2003) Symbiotic efficiency of autoch-thonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cad-mium polluted soil under increasing cadmium levels. Environ Pollut 126:179-189

    PubMed  CAS  Google Scholar 

  • Von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455-482

    Google Scholar 

  • Vosatka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modi-fies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245-251

    Google Scholar 

  • Wallander H, Lindahl BD, Nilsson LO (2006) Limited transfer of nitrogen between wood decom-posing and ectomycorrhizal mycelia when studied in the field. Mycorrhiza 16:213-217

    PubMed  CAS  Google Scholar 

  • Weber D, Strerner O, Anke T Gorzalczancy S, Martino V, Acevedo C (2004) Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina crista-galli. J. Antibiot (Tokyo) 57:559-563

    CAS  Google Scholar 

  • Weidner S, Pühler A, Küster H (2003) Genomics insights into symbiotic nitrogen fixation. Curr Opin Biotechnol 14:200-205

    PubMed  CAS  Google Scholar 

  • Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925-936

    PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacte-ria. Annu Rev Phytopahol 26:379-407

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations respon-sible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309-348

    PubMed  CAS  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fun-gal interactions. Antonie van Leeuwenhoek 81:357-364

    PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487-511

    PubMed  CAS  Google Scholar 

  • Whipps, JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents: progress, problems and potential, CABI Publishing, Wallingford, pp 9-22

    Google Scholar 

  • Whipps JM, Lynch JM (1986) The influence of the rhizosphere on crop productivity

    Google Scholar 

  • Whitehead NA, Byers JT, Commander P, Corbett MJ, Coulthurst SJ, Everson L, Harris AK, Pemberton CL, Simpson NJ, Slater H, Smith DS, Welch M, Williamson N, Salmond GP (2002) The regulation of virulence in phytopathogenic Erwinia species: quorum sensing, anti-biotics and ecological considerations. Antonie Van Leeuwenhoek 81:223-231

    PubMed  CAS  Google Scholar 

  • Wiener P (2000) Antibiotic production in a spatially structured environment. Ecol Lett 3:122-133

    Google Scholar 

  • Wilkinson H, Siegel MR, Blankenship JD, Mallory AC, Bush LP, Schardl CL (2000) Contribution of fungal loline alkaloids to protection from aphids in a grass-endophyte mutualism. MPMI 13:1027-1033

    PubMed  CAS  Google Scholar 

  • Wilson RA, Handley BA, Beringer JE (1997) Bacteriocin production and resistance in a field population of Rhizobium leguminosarum biovar viciae. Soil Biol Biochem 30:413-417

    Google Scholar 

  • Wirth S, Ulrich A (2002) Cellulose-degrading potentials and phylogenetic classification of car-boxymethyl-cellulose decomposing bacteria isolated from soil. System Appl Microbiol 25:584-591

    CAS  Google Scholar 

  • Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant inva-sion. BioSci 55:477-487

    Google Scholar 

  • Woo S, Fogliano V, Scala F, Lorito M (2002) Synergism between fungal enzymes and bacterial antibiotics may enhance biocontrol. Antonie Van Leeuwenhoek 81:353-356

    PubMed  CAS  Google Scholar 

  • Xu JR, Peng YL, Dickman MB, Sharon A (2006) The dawn of fungal pathogen genomics. Annu Rev Phytopathol 44:337-366

    PubMed  CAS  Google Scholar 

  • Yao J, Allen C (2006) Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol 188:3697-3708

    PubMed  CAS  Google Scholar 

  • Yuan WM, Crawford DL (1995) Charaterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119-3125

    PubMed  CAS  Google Scholar 

  • Zhang L, Birch RG (1997) The gene for albicidin detoxification from Pantoea dispersa encodes an esterase and attenuates pathogenicity of Xanthomonas albilineans to sugarcane. Proc Natl Acad Sci (USA) 94:9984-9989

    CAS  Google Scholar 

  • Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51-59

    PubMed  CAS  Google Scholar 

  • Zhang L, Xu J, Birch RG (1998) High affinity binding of albicidin phytotoxins by the AlbA pro-tein from Klebsiella oxytoca. Microbiology 144:555-559

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Hampp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tarkka, M., Schrey, S., Hampp, R. (2008). Plant Associated Soil Micro-organisms. In: Nautiyal, C.S., Dion, P. (eds) Molecular Mechanisms of Plant and Microbe Coexistence. Soil Biology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75575-3_1

Download citation

Publish with us

Policies and ethics