Advertisement

Modeling Visual Information Processing in Brain: A Computer Vision Point of View and Approach

  • Emanuel Diamant
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Image understanding and image semantics processing have recently become an issue of critical importance in computer vision R&D. Biological vision has always considered them as an enigmatic mixture of perceptual and cognitive processing faculties. In its impetuous and rash development, computer vision without any hesitations has adopted this stance. I will argue that such a segregation of image processing faculties is wrong, both for the biological and the computer vision. My conjecture is that images contain only one sort of information – the perceptual (physical) information, which can be discovered in an image and elicited for further processing. Cognitive (semantic) information is not a part of image-conveyed information. It belongs to a human observer that acquires and interprets the image. Relying on a new definition of “information”, which can be derived from Kolmogorov’s complexity theory and Chaitin’s notion of algorithmic information, I propose a unifying framework for visual information processing, which explicitly accounts for perceptual and cognitive image processing peculiarities. I believe, it would provide better scaffolding for modeling visual information processing in human brain.

Keywords

Computer Vision Visual Information Processing Biological Vision Image Processing Faculty Information Piece 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diamant, E.: Does a plane imitate a bird? Does computer vision have to follow biological paradigms? In: De Gregorio, M., Di Maio, V., Frucci, M., Musio, C. (eds.) BVAI 2005. LNCS, vol. 3704, pp. 108–115. Springer, Heidelberg (2005), http://www.vidiamant.info CrossRefGoogle Scholar
  2. 2.
    Milner, D., Goodale, M.: The Visual Brain in Action. Oxford Psychology Series, vol. 27. Oxford University Press, Oxford (1998)Google Scholar
  3. 3.
    Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Freeman, San Francisco (1982)Google Scholar
  4. 4.
    Treisman, A., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12, 97–136 (1980)CrossRefGoogle Scholar
  5. 5.
    Biederman, I.: Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review 94(2), 115–147 (1987)CrossRefGoogle Scholar
  6. 6.
    Barsalou, L.W.: Perceptual symbol systems. Behavioral and Brain Sciences 22, 577–660 (1999)CrossRefGoogle Scholar
  7. 7.
    Palmeri, T., Gauthier, I.: Visual Object Understanding. Nature Reviews: Neuroscience 5, 291–304 (2004)CrossRefGoogle Scholar
  8. 8.
    Treisman, A.: The binding problem. Current Opinion in Neurobiology 6, 171–178 (1996)CrossRefGoogle Scholar
  9. 9.
    Khefri, M.L., Ziou, D., Bernardi, A.: Image Retrieval From the World Wide Web: Issues, Techniques, and Systems. ACM Computing Surveys 36(1), 35–67 (2004)CrossRefGoogle Scholar
  10. 10.
    Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based Multimedia Information Retrieval: State of the Art and Challenges. In: ACM Transactions on Multimedia Computing, Communications, and Applications, February 2006, ACM Press, New York (2006)Google Scholar
  11. 11.
    Mojsilovic, A., Rogowitz, B.: Capturing image semantics with low-level descriptors. In: ICIP 2001. Proceedings of the International Conference on Image Processing, Thessaloniki, Greece, pp. 18–21 (October 2001)Google Scholar
  12. 12.
    Zhang, C., Chen, T.: From Low Level Features to High Level Semantics. In: Furht, B., Marques, O. (eds.) Handbook of Video Databases: Design and Applications, CRC Press, Boca Raton, USA (2003)Google Scholar
  13. 13.
    McRae, K.: Semantic Memory: Some insights from Feature-based Connectionist Attractor Networks. In: Ross, B.H. (ed.) The Psychology of Learning and Motivation, vol. 45 (2004), http://amdrae.ssc.uwo.ca/
  14. 14.
    Johansson, C., Lansner, A.: Attractor Memory with Self-organizing Input. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 265–280. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Treue, S.: Visual attention: the where, what, how and why of saliency. Current Opinion in Neurobiology 13, 428–432 (2003)CrossRefGoogle Scholar
  16. 16.
    Itti, L.: Models of Bottom-Up Attention and Saliency. In: Itti, L., Rees, G., Tsotsos, J. (eds.) Neurobiology of Attention, pp. 576–582. Elsevier, San Diego, CA (2005)Google Scholar
  17. 17.
    Hare, J., Lewis, P., Enser, P., Sandom, C.: Mind the Gap: Another look at the problem of the semantic gap in image retrival. In: SPIE. Proceedings of Multimedia Content Analysis, Management and Retrieval Conference, vol. 6073 (2006), http://www.ecs.soton.ac.uk/people/
  18. 18.
    Solomonoff, R.J.: The Discovery of Algorithmic Probability. Journal of Computer and System Science 55(1), 73–88 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Chaitin, G.J.: Algorithmic Information Theory. IBM Journal of Research and Development 21, 350–359 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kolmogorov, A.: Three approaches to the quantitative definition of information. Problems of Information and Transmission 1(1), 1–7 (1965)MathSciNetGoogle Scholar
  21. 21.
    Floridi, L.: Trends in the Philosophy of Information. In: Adriaans, P., van Benthem, J. (eds.) Handbook of Philosophy of Information, Elsevier, Amsterdam (forthcoming), http://www.philosophyofinformation.net
  22. 22.
    Diamant, E.: Image information content estimation and elicitation. WSEAS Transaction on Computers 2(2), 443–448 (2003), http://www.worldses.org/journals/ Google Scholar
  23. 23.
    Diamant, E.: Top-Down Unsupervised Image Segmentation (it sounds like an oxymoron, but actually it isn’t). In: PRRS 2004. Proceedings of the 3rd Pattern Recognition in Remote Sensing Workshop, Kingston University, UK (August 2004)Google Scholar
  24. 24.
    Diamant, E.: Searching for image information content, its discovery, extraction, and representation. Journal of Electronic Imaging 14(1) (January-March 2005)Google Scholar
  25. 25.
    Vitanyi, P.: Meaningful Information. IEEE Transactions on Information Theory 52(10), 4617–4624 (2006), http://www.cwi.nl/~paulv/papers CrossRefMathSciNetGoogle Scholar
  26. 26.
    Naphade, M., Huang, T.S.: Extracting Semantics From Audiovisual Content: The Final Frontier in Multimedia Retrieval. IEEE Transactions on Neural Networks 13(4), 793–810 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhou, X.S., Huang, T.S.: CBIR: From low-Level Features to High-Level Semantics. In: Proceedings SPIE, San Jose, CA, January 24-28, 2000, vol. 3974, pp. 426–431 (2000), http://www.ifp.uiuc.edu/~xzhou2/
  28. 28.
    Petridis, K., Kompatsiaris, I., Strintzis, M., Bloehdorn, S., Handschuh, S., Staab, S., Simou, N., Tzouvars, V., Avrithis, Y.: Knowledge Representation for Semantic Multimedia Content Analysis and Reasoning. IEEE Transactions on CSVT 15(10), 1210–1244 (2005), http://www.iti.gr/db.php/publications Google Scholar
  29. 29.
    Diamant, E.: In Quest of Image Semantics: Are We Looking for It Under the Right Lamppost? http://arxiv.org/abs/cs.CV/0609003
  30. 30.
    Tuffield, M., Shadbolt, N., Millard, D.: Narratives as a Form of Knowledge Transfer: Narrative Theory and Semantics. In: Proceedings of the 1st AKT (Advance Knowledge Technologies) Symposium, Milton Keynes, UK (June 2005)Google Scholar
  31. 31.
    Franks, N., Richardson, T.: Teaching in tandem-running ants. Nature 439, 153 (2006)CrossRefGoogle Scholar
  32. 32.
    Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., Poggio, T.: A theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex, CBCL MIT paper (November 2005), http://web.mit.edu/serre/...
  33. 33.
    Navon, D.: Forest Before Trees: The Precedence of Global Features in Visual Perception. Cognitive Psychology 9, 353–383 (1977)CrossRefGoogle Scholar
  34. 34.
    Chen, L.: Topological structure in visual perception. Science 218, 699–700 (1982)CrossRefGoogle Scholar
  35. 35.
    Navon, D.: What does a compound letter tell the psychologist’s mind? Acta Psychologica 114, 273–309 (2003)CrossRefGoogle Scholar
  36. 36.
    Chen, L.: The topological approach to perceptual organization. Visual Cognition 12(4), 553–637 (2005)CrossRefGoogle Scholar
  37. 37.
    Ahissar, M., Hochstein, S.: The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Science 8(10), 457–464 (2004)CrossRefGoogle Scholar
  38. 38.
    Juan, C.-H., Campana, G., Walsh, V.: Cortical interactions in vision and awareness: hierarchies in reverse. Progress in Brain Research 144, 117–130 (2004)CrossRefGoogle Scholar
  39. 39.
    Hansen, T., Olkkonen, M., Walter, S., Gegenfurtner, K.: Memory modulates color appearance. Nature Neuroscience 9(11), 1367–1368 (2006)CrossRefGoogle Scholar
  40. 40.
    Lawrence, J., Hendrickson, H.: Lateral gene transfer: when will adolescence end? Molecular Microbiology 50(3), 739–749 (2003)CrossRefGoogle Scholar
  41. 41.
    Diba, K., Koch, C., Segev, I.: Spike propagation in dendrites with stochastic ion channels. Journal of Computational Neuroscience 20, 77–84 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Kandel, E.: The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science 294, 1030–1038 (2001)CrossRefGoogle Scholar
  43. 43.
    Routtenberg, A., Rekart, J.: Post-translational protein modification as the substrate for long-lasting memory. TRENDS in Neurosciences 28(1), 12–19 (2005)CrossRefGoogle Scholar
  44. 44.
    Kahneman, D., Treisman, A., Gibbs, B.: The reviewing of object files: Object-specific integration of information. Cognitive Psychology 24, 175–219 (1992)CrossRefGoogle Scholar
  45. 45.
    Hommel, B.: Event files: Feature binding in and across perception and action. TRENDS in Cognitive Sciences 8(11), 494–500 (2004)CrossRefGoogle Scholar
  46. 46.
    Waydo, S., Kraskov, A., Quiroga, R., Freid, I., Koch, C.: Sparse Representation in the Human Medial Temporal Lobe. The Journal of Neuroscience 26(40), 10232–10234 (2006)CrossRefGoogle Scholar
  47. 47.
    European IST Research: Building on Assets, Seizing Opportunities (2005-2006), available: http://europa.eu.int/information_society/

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Emanuel Diamant
    • 1
  1. 1.VIDIA-mant, P.O. Box 933, 55100 Kiriat OnoIsrael

Personalised recommendations