Advertisement

The Application of Neural Networks in Classification of Epilepsy Using EEG Signals

  • Cenk Sahin
  • Seyfettin Noyan Ogulata
  • Kezban Aslan
  • Hacer Bozdemir
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Epilepsy is a disorder of cortical excitability and still an important medical problem. The correct diagnosis of a patient’s epilepsy syndrome clarifies the choice of drug treatment and also allows an accurate assessment of prognosis in many cases. The aim of this study is to evaluate epileptic patients and classify epilepsy groups by using Multi-Layer Perceptron Neural Networks (MLPNNs). 418 patients with epilepsy diagnoses according to International League against Epilepsy (ILAE, 1981) were included in this study. The correct classification of this data was performed by two expert neurologists before they were executed by MLPNNs. The MLPNNs were trained by the parameters obtained from the EEG signals and clinic properties of the patients. We classified the epilepsy into two groups such as partial and primary generalized epilepsy and we achieved an 89.2% correct prediction rate by using MLPNN model. The parameters of the loss of consciousness in the course of seizure, the duration and ritmicity of abnormal activities found in EEG constituted the most significant variables in the classification of epilepsy by using MLPNN. These results indicate that the classification performance of MLPNN model for epilepsy groups is satisfactory and we think that this model may be used in clinical studies as a decision support tool to confirm the classification of epilepsy groups after they are developed.

Keywords

Epilepsy EEG Multilayer Perceptron Neural Network (MLPNN) Levenberg-Marquardt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pedley, T.A., Mendiratta, A., Walczak, T.S.: Seizures and epilepsy. In: Ebersole, J.S., Pedley, T.A. (eds.) Current Practice of Clinical Electroencephalography, pp. 506–587. Lippincott Williams & Wilkins Comp., USA (2002)Google Scholar
  2. 2.
    Smith, S.J.M.: EEG in neurological conditions other than epilepsy: When does it help, what does it add? J. Neurol. Neurosurg. Psychiatry 76, 8–12 (2005)CrossRefGoogle Scholar
  3. 3.
    Smith, S.J.M.: EEG in diagnosis, classification, and management of patients with epilepsy. J. Neurol. Neurosurg. Psychiatry 76, 2–7 (2005)Google Scholar
  4. 4.
    King, M.A., Newton, M.R., Jackson, G.D., et al.: Epileptology of the first -seizure presentation: a clinical, electroencephalographic and magnetic resonance imaging study of 300 consecutive patients. Lancet 352, 1007–1011 (1998)CrossRefGoogle Scholar
  5. 5.
    Trescher, H.W., Lesser, R.P.: The Epilepsies. In: Bradley, G.W., Daroff, B.R. (eds.) Neurology in Clinical Practice, pp. 1745–1779. Buterworth-Heineman, USA (2000)Google Scholar
  6. 6.
    Kiloh, L.G., McComas, A.J., Osselton, J.W.: Clinical Electroencephalography, pp. 168–200. Butterworht & Co ltd., Great Britain (1972)Google Scholar
  7. 7.
    Selvi, S.T., Arumugam, S., Ganesan, L.: BIONET: An artificial neural network model for diagnosis of diseases. Pattern Recognition Letters 21, 721–740 (2001)CrossRefGoogle Scholar
  8. 8.
    Tomida, S., Hanai, T., Koma, N., Suzuki, Y., Kobayashi, T., Honda, H.: Artificial neural network predictive model for allergic disease using neural network nucleotide polymorphisms data. Journal of Bioscience and Bioengineering 93(5), 470–478 (2002)Google Scholar
  9. 9.
    Zhang, G.P., Berardi, V.L.: An investigation of neural networks in thyroid function diagnosis. Health Care Management Science 1, 29–37 (1998)CrossRefGoogle Scholar
  10. 10.
    Itchhaaporia, D., Snow, P.B., Almassy, R.J., Oetgen, W.J.: Artificial neural networks: current status in cardiovascular medicine. JACC 28(2), 515–521 (1996)Google Scholar
  11. 11.
    Abe, H., Ashizawa, K., Li, F., Matsuyama, N., Fukushima, A., Shiraishi, J., Macmahon, H., Dio, K.: Artificial neural networks for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad Radiol 11, 29–37 (2004)CrossRefGoogle Scholar
  12. 12.
    Webber, W.R.S., Lesser, R.P., Richardson, R.T., Wilson, K.: An approach to seizure detection using an artificial neural network. Electroencephalography and Clinical Neurophysiology 98, 250–272 (1996)CrossRefGoogle Scholar
  13. 13.
    Pradhan, N., Sadasivan, P.K., Arunodaya, G.R.: Detection of seizure activity in EEG by artificial neural network: A preliminary study. Computers and Biomedical Research 29, 303–313 (1996)CrossRefGoogle Scholar
  14. 14.
    Gabor, A.J.: Seizure detection using a self-organizing neural network: validation and comparison with other detection strategies. Electroencephalography and Clinical Neurophysiology 107, 27–32 (1998)CrossRefGoogle Scholar
  15. 15.
    Walczak, S., Nowack, W.J.: An artificial neural network to diagnosing epilepsy using lateralized burst of theta EEGs. Journal of Medical Systems 25(1), 9–20 (2001)CrossRefGoogle Scholar
  16. 16.
    Subasi, A., Ercelebi, E.: Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 78, 87–99 (2005)CrossRefGoogle Scholar
  17. 17.
    Alkan, A., Koklukaya, E., Subasi, A.: Automatic seizure detection in EEG using logistic regression and artificial neural network. Journal of Neuroscience Methods 148, 167–176 (2005)CrossRefGoogle Scholar
  18. 18.
    Guler, I., Ubeyli, E.D.: Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. Journal of Neuroscience Methods 48(2), 113–121 (2005)CrossRefGoogle Scholar
  19. 19.
    Kellaway, P.: Orderly approach to visual analysis: Elements of the normal EEG and their characteristics in children and adults. In: Ebersole, J.S., Pedley, T.A. (eds.) Current practice of clinical electroencephalography, pp. 100–159. Lippincott Williams & Wilkins, Philadelphia (2002)Google Scholar
  20. 20.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)zbMATHGoogle Scholar
  21. 21.
    Bernand, E.: Optimization training neural nets. IEEE Trans. Neural Networks 3(2), 989–993 (1992)Google Scholar
  22. 22.
    Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Networks 5(6), 989–993 (1994)CrossRefGoogle Scholar
  23. 23.
    Wilamowki, B.M., Iqlikci, S., Kaynak, O., Onder, E.M.: An algorithm for fast converges in training neural networks. In: IEEE Proceedings of International Joint Conference on Neural Networks, pp. 1778–1782 (2005)Google Scholar
  24. 24.
    Lera, G., Pinzolas, M.: A quasi-local Levenberg-Marquardt algorithm for neural network training. IEEE World Congress on Computational Intelligence 3, 2242–2246 (1998)CrossRefGoogle Scholar
  25. 25.
    Manolis, I.A.L., Antonis, A.A.: Is Levenberg-Marquardt the most efficient optimization algorithm for implementing bundle adjustment? IEEE Proceedings of International Conference on Computer Vision 2, 1526–1531 (2005)Google Scholar
  26. 26.
    Gaafar, L.K., Choueiki, M.H.A.: Neural network model for solving the lot sizing problem. The International Journal of Management Science 28, 175–184 (1999)Google Scholar
  27. 27.
    Hopkins, A., Garman, A., Clarke, C.: The first seizure in adult life. Value of clinical features, electroencephalography, and computerized tomographic scannig in prediction of seizure recurrence. Lancet 1, 721–726 (1988)CrossRefGoogle Scholar
  28. 28.
    Drake, M.E., Padamadan, H., Newll, A.S.: Interictal quantitative EEG in epilepsy. Seizure 7, 39–42 (1998)CrossRefGoogle Scholar
  29. 29.
    So, M.G., Thiele, A.E., Sanger, T., et al.: Electroencephalogram and clinical facilities in juvenile myoclonic epilepsy. J. Child Neurol. 13, 541–545 (1998)CrossRefGoogle Scholar
  30. 30.
    Grünewald, R.A., Chroni, E., Panayiotopoulos, P.P.: Delayed diagnosis of juvenile myoclonic epilepsy. J. Neurol. Neurosurg. Psychiatry 55, 487–490 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cenk Sahin
    • 1
  • Seyfettin Noyan Ogulata
    • 1
  • Kezban Aslan
    • 2
  • Hacer Bozdemir
    • 2
  1. 1.Department of Industrial Engineering, Faculty of Engineering and Architecture, Cukurova University, 01330, AdanaTurkey
  2. 2.Department of Neurology, Faculty of Medicine, Cukurova University, 01330, AdanaTurkey

Personalised recommendations