Advertisement

Computing the Maximum Using Presynaptic Inhibition with Glutamate Receptors

  • Dražen Domijan
  • Mia Šetić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Neurophysiological investigations suggest that presynaptic ionotropic receptors are important mechanism for controlling synaptic transmission. In this paper, presynaptic kainate receptors are incorporated in a feedforward inhibitory neural network in order to investigate their role in the cortical information processing. Computer simulations showed that the proposed mechanism is able to compute the function maximum by disinhibiting the cell with the maximal amplitude. The maximum is computed with high precision even in the case where inhibitory synaptic weights are weak and (or) asymmetric. Moreover, the network is able to track time-varying input and to select multiple winners. These capabilities do not depend on the dimensionality of the network. Also, the model is able to implement the winner-take-all behaviour.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alger, B.E., Pitler, T.A.: Retrograde signaling at GABAA-receptor synapses in the mammalian CNS. Trends Neurosci. 18, 333–340 (1995)CrossRefGoogle Scholar
  2. 2.
    Binns, K.E., Turner, J.P., Salt, T.E.: Kainate receptor (GluR5)-mediated disinhibition of responses in rat ventrobasal thalamus allows a novel sensory processing mechanism. J. Physiol. 551, 525–537 (2003)CrossRefGoogle Scholar
  3. 3.
    Ermentrout, B.: Complex dynamics in winner-take-all neural nets with slow inhibition. Neural Netw. 5, 415–431 (1992)CrossRefGoogle Scholar
  4. 4.
    Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9, 77–97 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gawne, T.J., Martin, J.M.: Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. J. Neurophysiol. 88, 1128–1135 (2002)Google Scholar
  6. 6.
    Grossberg, S.: Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Netw. 1, 17–61 (1988)CrossRefGoogle Scholar
  7. 7.
    Huettner, J.E.: Kainate receptors and synaptic transmission. Prog. Neurobiol. 70, 387–407 (2001)CrossRefGoogle Scholar
  8. 8.
    Kaski, S., Kohonen, T.: Winner-take-all networks for physiological models of competitive learning. Neural Netw. 7, 973–984 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kreitzer, A.C., Regehr, W.G.: Retrograde signalling by endocannabinoids. Curr. Opin. Neurobiol. 12, 324–330 (2002)CrossRefGoogle Scholar
  10. 10.
    MacDermott, A.B., Role, L.W., Siegelbaum, S.A.: Presynaptic ionotropic receptors and the control of transmitter release. Annu. Rev. Neurosci. 22, 443–485 (1999)CrossRefGoogle Scholar
  11. 11.
    Riesenhuber, M., Poggio, T.A.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)CrossRefGoogle Scholar
  12. 12.
    Sato, T.: Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Exp. Brain Res. 77, 23–30 (1989)CrossRefGoogle Scholar
  13. 13.
    Tsotsos, J., Culhane, S., Wai, W., Lai, Y., Davis, N., Nuflo, F.: Modeling visual attention via selective tuning. Artif. Intel. 78, 507–545 (1995)CrossRefGoogle Scholar
  14. 14.
    Wang, D.L.: Object selection based on oscillatory correlations. Neural Netw. 12, 579–592 (1999)CrossRefGoogle Scholar
  15. 15.
    Yu, A.J., Giese, M.A., Poggio, T.A.: Biophysically plausible implementations of the maximum operation. Neural Comput. 14, 2857–2881 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Yuille, A.L., Grzywacz, N.M.: A winner-take-all mechanism based on presynaptic inhibition feedback. Neural Comput. 1, 334–347 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dražen Domijan
    • 1
  • Mia Šetić
    • 1
  1. 1.Department of Psychology, Faculty of Philosophy, University of Rijeka, Ivana Klobučarića 1, 51000 RijekaCroatia

Personalised recommendations